• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Design Lab, Force of Sponge

Extracts from this document...

Introduction

IB Physics Yr.1 HL

Design Lab

Design Lab

Force exerted by a sponge

Purpose/Introduction

To determine the force applied by the stationary sponge when a cart at different speeds collides. In this experiment, a cart will collide with a sponge and because of Newton’s third Law of motion, the sponge will apply force on the cart as well, which will push it backwards. The cart will be released using the elastic force from a rubber band. This rubber band will be set as a slingshot where the cart will be placed between it. A photogate will be placed almost halfway between the slingshot and the sponge that will record the time for the cart. This will further give us the instantaneous velocity of the cart.

...read more.

Middle

cartvcart)after

Also, from the formula of impulse, it can be determined that:

Impulse = FΔt = mΔv

Hence, F= (mΔv) / t

Because we have already recorded the time that the cart takes to come to rest after collision, we can put it in the above formula, along with the momentum calculated before. This will finally give us the force exerted.

Independent variable: Speed of the cart

Dependant variable: Force applied by the sponge, Distance covered by cart after collision.

Controlled variable:

Type and size of sponge: As more mass or size of sponge affects the force exerted

Mass of cart: More mass means more momentum

Friction of surface: Friction means that there is net force

Shape and size of cart

...read more.

Conclusion

Place a photogate at almost halfway through and mark the point where it is placedMake sure that a meter stick is placed parallel to the apparatus with its tip at the end point of the spongeNow release the slingshot such the cart collides with the sponge and moves a certain distance backwardsAs soon as the cart hits the sponge, start a stopwatch and stop when the cart comes to rest. Record this time. Also, note down the distance of the cart when it moves backwardsRepeat steps 2, 5 and 6, where the slingshot is stretched more each time such that the velocity of the cart increases.Use the data collected to first calculate the velocity of the cart, then the momentum and then the force using the formula derived from impulse.

The apparatus is set up as below:

image00.png

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. The purpose of this lab is to examine impact craters. Impact craters occur when ...

    Average Diameter 50.00 34.17 60.00 35.15 70.00 35.77 80.00 36.75 90.00 37.85 Sandbox With 700 mL of Water Height (cm) Average Diameter 50.00 41.17 60.00 40.79 70.00 40.12 80.00 39.10 90.00 38.09 Now a data table of the calculations (natural log of the diameter of the craters)

  2. Investigating the Breaking Distance of a Cart

    No specific way was ensured to give out specific forces on the crate. The only way was to repeatedly release the crate with varying extensions of the elastic band. Thus it was problematic to control the initial velocity. Quick Steps 1.

  1. Motion due to a Steady Force - Lab

    The slope is steeper when acceleration is higher because the mass of the Weight was greater so the total mass was greater. If Newton 2nd law is correct and if our measurement is precise, the acceleration that we measured by measuring the time should be similar to the acceleration predicted

  2. Forces Lab. I decide to investigate the relationship between the propelling force exerted on ...

    constant by using the same runway, I expect Fweight will be proportional to d. Method: Apparatus List Margarine tub Masses Long lab table as runway Long sting Rulers Pencil 1. Set up the apparatus as shown in diagram 1 in the introduction.

  1. Investigation of the Rubber Band as Propulsion Device

    Calculate elasticity using Hooke's law vii. Repeat 10 trials d) 60 degrees i. Stuff 1-2 coffee crumpled coffee filters at the bottom of the tube (The crumpled coffee filters are there to deflect any direct air currents from rising up the tube)

  2. Pendulum Lab

    The pendulum was pulled back at an angle of 40�. 19. The timers prepared themselves (in the experiment there were two timers, one measuring the intervals with one period and with five periods, the other timer until the sixth period and the tenth period).

  1. HL Physics Revision Notes

    catching a ball). The only forces acting in projectile motion are gravity and friction. It is moving horizontally and vertically at the same time but the horizontal and vertical components of the motion are independent of eachother. Horizontal component: No forces in the horizontal direction, i.e.

  2. How does the sinkage depth of a tyre affect its rolling resistance ?

    It is also possible that the there was a high content of salt deposits on the sand as the sea water contained salt and the water from the sand had evaporated leaving behind salt deposits on the sand . We could have instead used soil instead as a surface bought

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work