• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the spring constant of a given spiral spring.

Extracts from this document...

Introduction

TED ANKARA COLLEGE FOUNDATION HIGH SCHOOL Physics, Experiment No. 2 Assessment Criteria: DCP, CE HOOKE'S LAW REYHAN AYAS Submitted to: Vedat G�l December 2008 Introduction Aim of the experiment: To understand the Hooke's Law by calculating the spring constant of a given spiral spring. Background Information: Provided that the stretching force does not extend a spring beyond its elastic limit, the extension of the spring is directly proportional to the stretching force. This is known as the Hooke's Law. The stretching force and the amount of extension can be expressed as : Stretching force = spring constant x amount of extension of the spring DATA COLLECTION Trial Mass(kg) � 0.001 Length (m) �0.001 Elongation of the spring (m) [�0.002] 1 0.050 0.290 0.070 2 0.070 0.315 0.095 3 0.100 0.320 0.100 4 0.120 0.330 0.110 5 0.150 0.340 0.120 6 0.200 0.350 ...read more.

Middle

� 0.001 Weight of the object N (� 0.001) Elongation of the spring (m) [�0.002] Weight/Elongation= K Spring constant (N/m) [�0.05] 1 0.050 0.489 0.070 6.99 2 0.070 0.685 0.095 7.21 3 0.100 0.978 0.100 9.78 4 0.120 1.17 0.110 10.64 5 0.150 1.47 0.120 12.25 6 0.200 1.97 0.130 15.15 7 0.250 2.44 0.140 17.43 8 0.280 2.74 0.145 18.90 9 0.330 3.23 0.160 20.19 10 0.350 3.42 0.165 20.73 11 0.370 3.62 0.170 21.29 12 0.410 4.01 0.180 22.28 13 0.430 4.20 0.185 22.70 14 0.480 4.69 0.200 23.45 15 0.560 5.47 0.220 24.86 Average spring consant 18.37 The mean of spring conrstants is 18.37 N/m. Calculation of the spring constant k (N/m) F= kx Graph 1: Graph of Force vs. ...read more.

Conclusion

Equipments used are to be highly calibrated, such a spring is to be used that is not loosened because of the forces over its elastic limit, otherwise spring will lose its ability to return to its original position, hence the accuracy of the experiment will be deteriorated. On the other hand, Graph 2 the bestline doesn't intersect with origin, even though according to the formula of Hook's Law it must. This situation is a consequence of ignoring the weight of the spring, as it is one of the components of force that provides elongation. Not using the weight of the spring makes our results less accurate. The experiment is to be conducted by the same equipments, such as the scales and rules for each trial, inevitably the data collected will be more precise. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Hooke's Law

    Record the new distance (s2 to s5) and the total mass each time. 8. Repeat steps 4-6 for a different spring. Record all results Results: Table 3.1 Data of springs' original length and initial mass Spring Initial mass m (kg)

  2. In this extended essay, I will be investigating projectile motion via studying the movement ...

    This indicates that the metal ball is easily influenced by air current and this kind of random error is difficult to unavoidable. The following are a series of improvements that can be made to the experimental methods: * Using a spring with a larger spring constant such as 80N/cm or

  1. Hookes Law- to determine the spring constant of a metal spring

    on 4 cm), as well as the same masses are used for each spring. The expected findings of this experiment is that the spring with the largest spring constant will extended least with the same amount of force applied. Therefore, the variation of the spring constant causes variation of extensions of different springs at the same amount of added-force.

  2. Hooke's Law Intro and data processing

    ?x = � 0.1 cm Average Force F (N) ?F = � 0.001 N Average Force Uncertainties F (N) 0.0 0.000 0.001 1.0 0.480 0.02 2.0 0.709 0.02 3.0 0.989 0.004 4.0 1.256 0.05 5.0 1.566 0.03 6.0 1.811 0.04 Sample Calculations: Extension: = (Length After Extension)

  1. Hooke's Law Experiment. Aim: To determine the spring constant.

    The results were observed and copied in a notebook, were a table was made showing the masses, and the (cm) results of the extensions for each trial. Method Diagram: Results Table: Mass(g) Weight (N) Trial 1(cm) Trial 2(cm) Trial 3(cm)

  2. Centripetal Force

    ?t = �0.005 s 1 7.16 2 7.25 3 6.79 4 7.72 5 6.40 6 8.04 7 7.84 8 7.41 9 6.32 10 6.53 Table 3.4 Result of time taken for 10 revolutions for mass 40 g Trial Time Taken t(s)

  1. HL Physics Revision Notes

    P84 Weightlessness: If a lift breaks and the lift and passenger accelerate down at 10ms-2 the person would spear to be weightless for the duration of the fall An astronaut in an orbiting space station would also appear weightless Topic 10: Thermal Physics: The three ideal gas laws can be

  2. Experiment to show the application of Kirchhoffs Voltage Law & Kirchhoffs Current Law in ...

    Results from simulation: Set 1: Resistant R1 = 1k? R2 = 4.7k? Current 10 mA 2.126 mA Set 2: Resistant R1 = 100 ? R2 = 2k? Current 0.1 A 5 mA Comment: : For set 1 ,the result is IR1 is 10mA and IR2 2.126mAThe total current is 12.126m

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work