• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the spring constant of a given spiral spring.

Extracts from this document...


TED ANKARA COLLEGE FOUNDATION HIGH SCHOOL Physics, Experiment No. 2 Assessment Criteria: DCP, CE HOOKE'S LAW REYHAN AYAS Submitted to: Vedat Gül December 2008 Introduction Aim of the experiment: To understand the Hooke's Law by calculating the spring constant of a given spiral spring. Background Information: Provided that the stretching force does not extend a spring beyond its elastic limit, the extension of the spring is directly proportional to the stretching force. This is known as the Hooke's Law. The stretching force and the amount of extension can be expressed as : Stretching force = spring constant x amount of extension of the spring DATA COLLECTION Trial Mass(kg) ± 0.001 Length (m) ±0.001 Elongation of the spring (m) [±0.002] 1 0.050 0.290 0.070 2 0.070 0.315 0.095 3 0.100 0.320 0.100 4 0.120 0.330 0.110 5 0.150 0.340 0.120 6 0.200 0.350 ...read more.


± 0.001 Weight of the object N (± 0.001) Elongation of the spring (m) [±0.002] Weight/Elongation= K Spring constant (N/m) [±0.05] 1 0.050 0.489 0.070 6.99 2 0.070 0.685 0.095 7.21 3 0.100 0.978 0.100 9.78 4 0.120 1.17 0.110 10.64 5 0.150 1.47 0.120 12.25 6 0.200 1.97 0.130 15.15 7 0.250 2.44 0.140 17.43 8 0.280 2.74 0.145 18.90 9 0.330 3.23 0.160 20.19 10 0.350 3.42 0.165 20.73 11 0.370 3.62 0.170 21.29 12 0.410 4.01 0.180 22.28 13 0.430 4.20 0.185 22.70 14 0.480 4.69 0.200 23.45 15 0.560 5.47 0.220 24.86 Average spring consant 18.37 The mean of spring conrstants is 18.37 N/m. Calculation of the spring constant k (N/m) F= kx Graph 1: Graph of Force vs. ...read more.


Equipments used are to be highly calibrated, such a spring is to be used that is not loosened because of the forces over its elastic limit, otherwise spring will lose its ability to return to its original position, hence the accuracy of the experiment will be deteriorated. On the other hand, Graph 2 the bestline doesn't intersect with origin, even though according to the formula of Hook's Law it must. This situation is a consequence of ignoring the weight of the spring, as it is one of the components of force that provides elongation. Not using the weight of the spring makes our results less accurate. The experiment is to be conducted by the same equipments, such as the scales and rules for each trial, inevitably the data collected will be more precise. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Hookes Law- to determine the spring constant of a metal spring

    on 4 cm), as well as the same masses are used for each spring. The expected findings of this experiment is that the spring with the largest spring constant will extended least with the same amount of force applied. Therefore, the variation of the spring constant causes variation of extensions of different springs at the same amount of added-force.

  2. Hooke's Law Experiment. Aim: To determine the spring constant.

    the participants and we were able to take measurements in a fairly small amount of time. Though there were that we encountered during the lab and they are the source of the errors in the measurements. If those problems didn't exist or could be resolved then the spring constant would be the same in all cases.

  1. In this extended essay, I will be investigating projectile motion via studying the movement ...

    The experimental values of range obtained are less than the corresponding theoretical values of range. This is mainly due to the air resistance. Thirdly, the trajectory of the projected metal ball clearly resembled a parabolic path, which matched with the description and characteristic of a typical projectile motion.

  2. centripetal force lab (DCP, CE)

    ==> . Therefore, the theoretical gradient of the graph should be gradient = , which is well within the uncertainty of the graph. Evaluation: Systematic uncertainty From the T-2-mass graph, the best-fit line and the uncertainty range do not pass through the origin.

  1. Centripetal Force

    is given by ?F = = 4?2rmf2. where: Fc is the centripetal force in N Fg is the force of gravity in N r is the radius of the string in m ms is the mass of the rubber stopper in kg ml is the mass of the suspended load in kg g is the gravitation in

  2. Determine the spring constant of a vertical spiral spring in simple harmonic motion using ...

    the spring placed in between the retort stand holder; each measurement taken will be measured to the nearest 0.05 cm and recorded on a data table.

  1. Finding the Spring Constant

    For the time of the trials, the uncertainty is 0.01(this being the equipment error) + reaction time. So 0.01 + 0.2 = ± 0.21s Processed Data: Table 2- Processed data (Period, Uncertainties, T² and more stated in the table) Hanging mass (kg) ? Mass (kg) T for 10 Oscillations (s)

  2. HL Physics Revision Notes

    The average global albedo is about 0.3. The variations depend on the season, latitude or whether one is over desert land. The greenhouse effect is the warming of the Earth caused by infrared radiation, emitted by the Earthâs surface, which is absorbed by various gases in the Earthâs atmosphere and is then partly re-radiated towards the surface.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work