Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the spring constant of a given spiral spring.

Do not show me this again

Are you in the right place?

Jump to Physics and see how teachers think you should prepare in:

Extracts from this essay...

Introduction

TED ANKARA COLLEGE FOUNDATION HIGH SCHOOL Physics, Experiment No. 2 Assessment Criteria: DCP, CE HOOKE'S LAW REYHAN AYAS Submitted to: Vedat Gül December 2008 Introduction Aim of the experiment: To understand the Hooke's Law by calculating the spring constant of a given spiral spring. Background Information: Provided that the stretching force does not extend a spring beyond its elastic limit, the extension of the spring is directly proportional to the stretching force. This is known as the Hooke's Law. The stretching force and the amount of extension can be expressed as : Stretching force = spring constant x amount of extension of the spring DATA COLLECTION Trial Mass(kg) ± 0.001 Length (m) ±0.001 Elongation of the spring (m) [±0.002] 1 0.050 0.290 0.070 2 0.070 0.315 0.095 3 0.100 0.320 0.100 4 0.120 0.330 0.110 5 0.150 0.340 0.120 6 0.200 0.350

Middle

± 0.001 Weight of the object N (± 0.001) Elongation of the spring (m) [±0.002] Weight/Elongation= K Spring constant (N/m) [±0.05] 1 0.050 0.489 0.070 6.99 2 0.070 0.685 0.095 7.21 3 0.100 0.978 0.100 9.78 4 0.120 1.17 0.110 10.64 5 0.150 1.47 0.120 12.25 6 0.200 1.97 0.130 15.15 7 0.250 2.44 0.140 17.43 8 0.280 2.74 0.145 18.90 9 0.330 3.23 0.160 20.19 10 0.350 3.42 0.165 20.73 11 0.370 3.62 0.170 21.29 12 0.410 4.01 0.180 22.28 13 0.430 4.20 0.185 22.70 14 0.480 4.69 0.200 23.45 15 0.560 5.47 0.220 24.86 Average spring consant 18.37 The mean of spring conrstants is 18.37 N/m. Calculation of the spring constant k (N/m) F= kx Graph 1: Graph of Force vs.

Conclusion

Equipments used are to be highly calibrated, such a spring is to be used that is not loosened because of the forces over its elastic limit, otherwise spring will lose its ability to return to its original position, hence the accuracy of the experiment will be deteriorated. On the other hand, Graph 2 the bestline doesn't intersect with origin, even though according to the formula of Hook's Law it must. This situation is a consequence of ignoring the weight of the spring, as it is one of the components of force that provides elongation. Not using the weight of the spring makes our results less accurate. The experiment is to be conducted by the same equipments, such as the scales and rules for each trial, inevitably the data collected will be more precise.

The above preview is unformatted text

Found what you're looking for?

  • Start learning 29% faster today
  • Over 150,000 essays available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Over 180,000 student essays
  • Every subject and level covered
  • Thousands of essays marked by teachers
  • Over 180,000 essays
    written by students
  • Annotated by
    experienced teachers
  • Ideas and feedback to write
    your own great essays

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.

Do not show me this again

Are you in the right place?

Jump to Physics and see how teachers think you should prepare in: