• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hooke's Law Experiment. Aim: To determine the spring constant.

Extracts from this document...



Title: Hooke’s Law

Aim: To determine the spring constant.


  • Retort stand (with clamp)
  • Spring (with hook)
  • Masses ( 100g, 200g, 300g, 400g, 500g )
  • Ruler


Independent Variable:

  • Changing the mass  Weight force (F).

Dependent Variable:

  • The extension of the spring Δx.

Control Variable:

  • “Spring”    → Dimensions of the spring.

                             → Mass of the spring.

                             → Radius of the spring.

  • “Retort Stand” → Height of the retort stand.


  1. The spring (its dimensions, mass and its radius) were measured in its initial face.
  2. The spring was then place in the clamps of the retort stand and was held together tightly enough to hold it in place.
  3. At the end of the spring (where the hook is), a mass of 100 grams was placed and as a result the spring started to extend downwards.
...read more.







Results Table:


Weight (N)

Trial 1(cm)

Trial 2(cm)

Trial 3(cm)

Trial 4(cm)

Trial 5(cm)

...read more.


The results are definitely not totally accurate (as shown in the table), because the measurements were read off the meter stick by eye to the nearest mm .Movements in the room by other people caused vibrations which also contributed slightly to the inaccurate results.

Solutions to those problems:

  • Using a brand new identical spring could help solve the problem of the elasticity, since the spring can now sustain its elastic restoring force that is directed upward.
  • The measurements could be performed using a digital ruler, which would have been a lot more accurate that the measurement performed by a naked eye.
  • The solution to the problem of the vibration and the general movement of people in the room, is to perform the experiment in a more isolated and “quiet” area, so there are no interferences whatsoever.  

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. The purpose of this experiment is to determine the refractive index of Perspex plastic. ...

    The uncertainty for the inverse value is the percent uncertainty of the inverse value which will be rounded up to 1 significant figure and the value cannot exceed the amount of decimal places of the uncertainty. Conclusion: From graphs 1 and 2, it is evident that the relationship between the

  2. Hooke's Law

    is proportional to the applied force. The value of k is constant for a particular spring. The relationship should be directly linear. Furthermore, the spring used in the experiment should also be varied as to prove Hooke's law which states that each spring has its own spring constant.

  1. Finding the Spring Constant

    calculate the period T is basically by dividing the average time for each mass. The way we get the uncertainty of the period T is dividing the uncertainty gotten in the average period T and dividing that by 10 as well.

  2. Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the ...

    is observed and it may be concluded that Force and Elongation are directly proportional to each other., whilst the same spring is used. That is due to the increase in weight, inevitably in force applied to the spring. The spring constant is found to be 36.42 N/m.

  1. Suspension Bridges. this extended essay is an investigation to study the variation in tension ...

    would be expected to be roughly uniform irrespective of the point of application of force and the length of the string. Conversely, for strings which are highly inelastic (? < 0.114) the range of tension values is expected to be high and also, there would be exponential increase in the tension values with reducing lengths of the strings.

  2. Energy density experiment - Aim: To determine the energy density of ethanol

    The standard, accepted measurement of the energy density of ethanol is 26.8 MJ kg-1 (26,800,000 J kg-1). Therefore, the results of this experiment does not support the standard value as it does not lie between the uncertainty. The average value is only approximately 50% of the standard value.

  1. Hookes Law- to determine the spring constant of a metal spring

    Measure the force and extension of the spring 2. Plot a graph 3. Find the slop of the graph, which is , the spring constant 2. QUESTION What is the role of the spring constant in the relationship of force and extension and how can it be determined?

  2. In this extended essay, I will be investigating projectile motion via studying the movement ...

    Finally, use the equation (distance traveled = velocity x time of flight) for the horizontal motion of the metal ball and we have: Range = ut = (V((2ky)/(mg)))x (Check appendix 1 on page for the full development of equations) Where u = projection velocity, t = total time of flight,

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work