• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hooke's Law Experiment. Aim: To determine the spring constant.

Extracts from this document...



Title: Hooke’s Law

Aim: To determine the spring constant.


  • Retort stand (with clamp)
  • Spring (with hook)
  • Masses ( 100g, 200g, 300g, 400g, 500g )
  • Ruler


Independent Variable:

  • Changing the mass  Weight force (F).

Dependent Variable:

  • The extension of the spring Δx.

Control Variable:

  • “Spring”    → Dimensions of the spring.

                             → Mass of the spring.

                             → Radius of the spring.

  • “Retort Stand” → Height of the retort stand.


  1. The spring (its dimensions, mass and its radius) were measured in its initial face.
  2. The spring was then place in the clamps of the retort stand and was held together tightly enough to hold it in place.
  3. At the end of the spring (where the hook is), a mass of 100 grams was placed and as a result the spring started to extend downwards.
...read more.







Results Table:


Weight (N)

Trial 1(cm)

Trial 2(cm)

Trial 3(cm)

Trial 4(cm)

Trial 5(cm)

...read more.


The results are definitely not totally accurate (as shown in the table), because the measurements were read off the meter stick by eye to the nearest mm .Movements in the room by other people caused vibrations which also contributed slightly to the inaccurate results.

Solutions to those problems:

  • Using a brand new identical spring could help solve the problem of the elasticity, since the spring can now sustain its elastic restoring force that is directed upward.
  • The measurements could be performed using a digital ruler, which would have been a lot more accurate that the measurement performed by a naked eye.
  • The solution to the problem of the vibration and the general movement of people in the room, is to perform the experiment in a more isolated and “quiet” area, so there are no interferences whatsoever.  

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the ...

    is observed and it may be concluded that Force and Elongation are directly proportional to each other., whilst the same spring is used. That is due to the increase in weight, inevitably in force applied to the spring. The spring constant is found to be 36.42 N/m.

  2. The purpose of this experiment is to determine the refractive index of Perspex plastic. ...

    Graphing: Graph 1. Average trendline of sin(?1) vs. sin(?2): Graph 2: Maximum and minimum trendline of sin(?1) vs. sin(?2): More Sample Calculations: Sample calculation 4. Calculating the percent uncertainty of the average gradient: Sample Calculations 6. Calculating the refractive index of Perspex plastic and the uncertainty Since the angle of incident was the

  1. Energy density experiment - Aim: To determine the energy density of ethanol

    trend line does not pass through all error bars in Graph 1 (the last error bars). Despite that the trend line does not pass through all errors bars, one of the major problems using maximum deviation is that it over estimates the error.

  2. In this extended essay, I will be investigating projectile motion via studying the movement ...

    air resistant and the vertical acceleration of the metal ball decreases due to the vertical component of the air resistant on the metal. However, the resistant force is extremely small compared to the gravitational force and hence the time of flight of the metal ball is more or less constant.

  1. Hooke's Law

    The method in conducting the experiment is as follows. First weigh and record the masses of each mass hanger and the masses. Attach the lighter spring to the clamp on the retort stand and suspend the mass hanger from the spring.

  2. Hookes Law- to determine the spring constant of a metal spring

    HYPOTHESIS The independent variable of this experiment is Mass (the number of masses added) and the dependent variable is Extension (the extension of the spring). The control variables are the same ruler used (the same scale) with the same initial positions (each spring was measured by the ruler sat

  1. Experiment on looking at enthalpy of solutions

    28,00 17,10 17,40 17,25 29,00 17,10 17,30 17,20 30,00 17,10 17,30 17,20 31,00 17,10 17,30 17,20 32,00 17,00 17,30 17,15 33,00 17,10 17,30 17,20 34,00 17,00 17,30 17,15 35,00 17,00 17,30 17,15 36,00 17,00 17,30 17,15 37,00 17,00 17,20 17,10 38,00 17,00 17,30 17,15 39,00 17,00 17,20 17,10 40,00 17,00

  2. Finding the Spring Constant

    For the time of the trials, the uncertainty is 0.01(this being the equipment error) + reaction time. So 0.01 + 0.2 = � 0.21s Processed Data: Table 2- Processed data (Period, Uncertainties, T� and more stated in the table) Hanging mass (kg) ? Mass (kg) T for 10 Oscillations (s)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work