• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hooke's Law

Extracts from this document...

Introduction

Hooke’s law: determining k for a spring

Aim:

To investigate Hooke’s law for simple springs of rubber

Hypothesis:

The relationship between a load force and a light spring (F=k.x) was first determined by Robert Hooke in the 17th century.Where F is the force applied to the spring, k is the spring constant, and  x is the extension of the spring. Hooke’s law states that when an elastic material is subjected to a force, its extension (x) is proportional to the applied force. The value of k is constant for a particular spring.

Variables:

Independent

Controlled

Dependent

Different type of spring used (varied by using different springs)

Weight of the mass attached (controlled by using only one mass)

Spring constant

Extension by the spring (measure by ruler)

Materials:

Item

Quantity

Accuracy

Spring with different stiffness

5

-

Retort stand and clamp

1

-

Meter rule or other measuring devices

1

±0.005 m

Mass hanger

1

-

50 gr masses

10

Δm ±0.05 gr

balance

1

-

Methods:

  1. First weigh and record the masses of each mass hanger and the masses
  2. Record these in a suitable for reference during the activity
...read more.

Middle

0.144

3

0.15

0.145

4

0.20

0.184

5

0.25

0.240

6

0.30

0.291

7

0.35

0.350

8

0.40

0.402

9

0.45

0.469

10

0.50

0.524

Table 3.6 Data of spring 5 extension

Trial (n)

Mass

m (kg)

Suspended Length

x2 (m)

Δx2=±0.0005m

1

0.05

0.179

2

0.10

0.196

3

0.15

0.221

4

0.20

0.246

5

0.25

0.274

6

0.30

0.301

7

0.35

0.328

8

0.40

0.355

9

0.45

0.381

10

0.50

0.412

Data processing:

k= (Δm/Δx) x g

Table 4.1 Data of spring 1 extension

Trial

(n)

Mass

m (kg)

Pulling force

F (N)

Suspended Length

x2 (m)

Δx2=±0.0005m

1

0.05

0.49

0.140

2

0.10

0.98

0.141

3

0.15

1.47

0.145

4

0.20

1.96

0.177

5

0.25

2.45

0.235

6

0.30

2.94

0.289

7

0.35

3.43

0.346

8

0.40

3.92

0.401

9

0.45

4.41

0.465

10

0.50

4.90

0.533

image00.png

Spring’s constant:

image01.png

Table4.2 Data of spring 2 extension

Trial

(n)

Mass

m (kg)

Pulling force

F (N)

Suspended Length

x2 (m)

Δx2=±0.0005m

1

0.05

0.49

0.158

2

0.10

0.98

0.158

3

0.15

1.47

0.172

4

0.20

1.96

0.236

5

0.25

2.45

0.292

6

0.30

2.94

0.367

7

0.35

3.43

0.426

8

0.40

3.92

0.487

9

0.45

4.41

0.558

10

0.50

4.90

0.635

image04.png

Spring’s constant:

image05.png

Table4.

...read more.

Conclusion

th spring that is very stiff (18.679) and on the other hand in 3rd spring that is the least stiff (3.584).

        The difficulties encountered in conducting this experiment is when measuring the extension of the spring, as the spring tend to swings when the mass is attached and this can affect the result of the experiment. In addition, the extension of the spring occasionally hits the floor when the number of mass is increased and this affected the results. This difficulty has been solved by using a retort stand and clamp, which give an increase the stretch of the spring but still easily adjusted.

        In conclusion, it could be said that the experiment is successful in verifying value of the spring constant. Both the Hooke's law and the graph give similar result, thus proving the hypothesis. My suggestion to improve the experiment is to carefully measure the extension of the spring despite the variation of the spring. This is best dealt with by carefully observed the spring until it places perfectly so that there will be no further movements that may lead to the mistake in calculating the exact extension of the spring.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Hook's law. Aim of the experiment: To understand the Hookes Law by calculating the ...

    * Human reaction time * Human parallax error * Errors occurred in rounding data * Elasticity of the of the spring * Ignoring the weight of the spring Increased number of trials would lessen the error rate.

  2. Aim: To prove the parallelogram law of vector addition

    It could also be caused by existence of friction between the string and the pulley wheel which is not taken into account here. Errors could also be caused when we are using a protractor to measure the angle between the two forces.

  1. Hookes Law- to determine the spring constant of a metal spring

    21.0 21.0 21.0 300 22.9 22.9 22.9 350 24.8 24.8 24.8 400 26.7 26.7 26.7 450 28.5 28.5 28.5 500 30.4 30.4 30.4 550 32.3 32.3 32.3 600 34.1 34.1 34.1 The uncertainty in the Masses Measurement was + 1 g The uncertainty in the Ruler Measurement was + 0.05 cm b)

  2. In this extended essay, I will be investigating projectile motion via studying the movement ...

    The theoretical range value increase progressively as the compressed spring length increases/decrease. A greater compressed spring length results in a longer metal ball trajectory. Thus, the work done against friction would be greater as Work done against friction =

  1. Suspension Bridges. this extended essay is an investigation to study the variation in tension ...

    Nylon String (Length ? 1.6 m) 4. Elastic Band (Length ? 1.6 m) 5. String of negligible weight (50 cm) 6.

  2. This is a practical to investigate the relationship between time period for oscillations and ...

    The uncertainty for mass is � 0.01kg which is the smallest division in the weighing scale. Source for reaction time: http://www.humanbenchmark.com/tests/reactiontime/index.php Conclusion: From the graph it can be concluded that the relationship between time squared and mass is a straight line passing through the origin which implies that mass is directly proportional to time square.

  1. Oscillating Mass

    Accurately measure the mass m of the object and attach it to one end of the spring. 3. Set the meter stick parallel to the ring stand, and elongate the spring 10cm. 4. Let go of the spring as you start timing on the stop watch.

  2. HL Physics Revision Notes

    and blue light is bent the most This is because the refractive index for red light is smaller than blue Distinguish between transmission, absorption and scattering of radiation. Transmission - electromagnetic radiation passing from one medium to another Absorption - Photons are absorbed by material Can cause temperature to increase

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work