• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

IBPhysics - Circular Motion Lab -MedepalliD

Extracts from this document...

Introduction

Dhruv Medepalli – Circular Motion Lab                 pg

Circular Motion Lab

DESIGN

Aspect 1 – Defining the problem and selecting variables

Problem: How does a change in the length of the radius affect the velocity of the stopper?

Research:

Circular motion can be expressed in terms of formulas as it directly links to Newton’s 2nd law, f=ma.

Fc = m*a

This relates to circular motion as in circular motion:

image24.png

Because f= m*a

We can say that:

image25.png

image31.png

image32.png

Frequency = number of revolutions per second

Variables

Independent variable(s) (manipulated):

  • Radius

Dependent variable(s) (measured):

  • Velocity

Controlled variable(s) (constant):

  • Human Error
  • Friction
  • Air resistance
  • Technology

Aspect 2 – Controlling variables

The variables were controlled in the following ways:

Independent:

  • Radius- during the Experiment that we conducted our independent variable that we controlled was the radius. We controlled the radius length which affected the rev/s during our lab and based on that we gathered our data.  

Controlled:

  • Human Error- controlling human error played a major role in our lab. This was because the timer tried to reduce error by gathering exact time. We reduced the error and got a more precise time by conducting three trials per radius length.
  • Friction- In this lab we assumed that there was no friction
  • Air resistance- In this lab we assumed there was no air resistance
  • Technology- In our lab, the major piece of technology that we used was the stopwatch. The stop watch that we had received was hard to use and had a slow reaction time. There would be error in the time between when we stopped the experiment and we stopped the timer as the timer was a slow reactor.

Aspect 3 – Developing a method for collection of data

  1. Gather all the materials which included:
  1. 1 hanging mass
  2. 1 stopper
  3. 1 meter stick
  4. 1 piece of string
  5. 1 test tube
  6. 1 marker pen
  1. Record the mass of the hanging mass and the stopper
  2. Create ones table
  3. Mark the 30cm,40cm,50cm,60cm, and 70 cm lengths on the string
  4. Place tube through the string
  5. Tie the string to the hanging mass and tie the stopper to the string  
  6. Practice swinging  the stopper with one hand holding the tube
  7. When you have got the hang of it, take your first cm and make sure it is a the rim of the tube
  8. Begin timing and count to 20 revolutions and stop
  9. Take down the time in which it took to do 20 revolutions
  10. Repeat steps 7-10 with the other measurements

Lab setup:

image33.png

DATA COLLECTION AND PROCESSING

Aspect 1 – Recording raw data

Uncertainties

  • Centimeters: 1cm ± .05cm
  • Time: 1s ± .005s
  • Mass: 1kg ± 0.000005kg
...read more.

Middle

70± .05cm

1.35 ± 0.02

1.37 ± 0.02

1.36±0.02

How to Convert into m/s -1

Rev/s* 2𝛑r

2.13±.02 * 2𝛑r

2.13 (2) (𝛑) (.3)

= 4.01

±.02* 2𝛑r

= ±.04

Table of m/s -1

Radius ± .05cm

m/s-1

Trial 1

m/s-1

Trial 2

m/s-1

Trial 3

30± .05cm

4.01±0.04

3.56±0.04

3.93±0.04

40± .05cm

4.42±0.04

4.59±0.04

4.52±0.04

50± .05cm

4.99±0.04

5.18±0.04

5.30±0.04

60± .05cm

4.89±0.04

5.53±0.04

5.76±0.04

70± .05cm

5.93±0.04

6.02±0.04

5.97±0.04

Average Velocity of m/s-1

Radius ± .05cm

Average Velocity of m/s-1

30± .05cm

3.83±0.04

40± .05cm

4.51±0.04

50± .05cm

5.16±0.04

60± .05cm

5.39±0.04

70± .05cm

5.97±0.04

...read more.

Conclusion

Aspect 3 – Improving the investigation

With reference to Aspect to where it states that an abundance of time was given; we could have taken more trails and got our data even more precise, it would have been really fun to see what would happen if the radius got much smaller and if the radius got a whole lot bigger. In the future we could definitely get better stop watches which would help a lot more. With stop watches being a major deal, another person good have joined the group and more times could have been taken per trial which would make the data reduced of errors greatly.

Dhruv Medepalli – Circular Motion Lab                 pg

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Density of Alcohol Lab

    Ispirto evaporates fast, so the amount of ispirto decreases in every second. Transferring ispirto from graduated cylinder to beaker made the experiment harder to be more precise on the volume.

  2. Analyzing Uniform Circular Motion

    - The person spinning and the human force put in for the motion are also minor things which will be attempted to maintain constant throughout the experiment. Assumptions The only assumption to be made is that; the length of the string measured to be intact with the plastic and the spinning mass is the radius of the circle.

  1. Suspension Bridges. this extended essay is an investigation to study the variation in tension ...

    At the end of the study, the trend between tension in the left segment and point of application of force can be modeled by negative quadratic equations. This goes on to explain that tension increases till the maximum point and then starts decreasing.

  2. Ohm's Law lab

    Error bars cannot be shown as the magnitude of error � (1 - 5)% is insignificant on the graph. From DCP Table 1.3 and Graph 1.1, we have proved the bulb filament to be non-Ohmic. CE Graph 1.2 - Graph showing the plotted readings for the bulb filament immersed in water with the ammeter reading (A)

  1. Circular motion lab

    = = 0. 05 cm > Error of Calculated Time = Least Count � 2 = 0.1 � 2 0.05 s > Small mass (m) = 18.46 � 0.01 gms > Big Mass (M) = 300.00 � 0.01 gms Data Collection & Processing: The data collected by the procedure is recorded and tabulated below: No.

  2. Horizontal Circular Motion Lab

    Partner B will swing the stopper until it reaches a relatively constant speed and position, at this time, Partner C will start his timer and call the time required for 10 full revolutions made by the stopper for Partner A to record to the nearest hundredth of a second.

  1. HL Physics Revision Notes

    Describe how the masses of nuclei may be determined using a Bainbridge mass spectrometer Students should be able to draw a schematic diagram of the Bainbridge mass spectrometer, but the experimental details are not required. Students should appreciate that nuclear mass values provide evidence for the existence of isotopes.

  2. How does the sinkage depth of a tyre affect its rolling resistance ?

    The graph starts off with a sinkage depth of 0.98 cm due to 49.04 kPa and decreases until it reaches 0.2 cm from which the value of the sinkage depth starts to increase . At 147.12 kPA the tire has a considerable amount f air inflated .

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work