• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28

Investigating electromagnetic induction

Extracts from this document...

Introduction

Investigating electromagnetic induction

Aim:

  • To investigate the factors that cause electromagnetic induction in a coil
  • To investigate the effect of the number of turns in a solenoid and the order of a magnet bar is inserted (whether it’s pushed or pulled out) to the current induced in the electromagnet

Hypothesis:

Number of turns in solenoid will make the effect to the strength of the current induced and the order which the magnet is pulled out or pushed in will affect the direction of the induced electromagnetic field image08.png

Variables:

Dependent

Independent

Controlled

Current

  • Number of turns in solenoid
  • Order of magnet inserted

Same magnet

Apparatus:

Item

Quantity

Accuracy

Styrofoam

1

-

Solenoid

4

-

Magnet

1

-

Ruler

1

± 1 cm

Cable

As needed

-

Ampere meter

1

-

Diagram

image09.pngimage00.png

image01.png

image02.pngimage03.png

image04.png

image06.pngimage07.pngimage05.png

Methods:

  1. Firstly, set up all materials that we need as the diagram shown
  2. Then, drop the north end of a bar magnet towards the coils and insert it to the end for 10 times
  3. Observe and record the reading on ammeter
  4. Repeat it with bringing south pole towards and into the coil for 10 times
  5. Change the bar magnets with bigger intensity (600×, 1200×, 3600×)
  6. Observe and record data about the changes

Results / data collection:

Table1. Current induced in 300 turns from 10 cm

North

South

Current ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

3

3

3

2

3.5

3

3

3

2

3

3

3

3

3

3

2

2

3

3

3

2

3

3

2

2

3,5

3

2,5

3

3,5

2

3

2

3

3

2

2

3

2

2,5

Mean ( image10.png) 2.1

Mean ( image10.png) 3.1

Mean ( image10.png) 2.8

Mean ( image10.png) 2.5

Table2. Current induced in 300 turns, from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

3

3

3

2

3

3

3

2

3

3

3

2

3

3

3

2

2

3

4

2

3

3

3

2

3

3

3

2

3

2,5

3

2

3

3

3

2

2

3

3

2

Mean ( image10.png) 2.80

Mean ( image10.png) 2.95

Mean ( image10.png) 3.1

Mean ( image10.png) 2

Table.3 current induced in 600 turns from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

5

5

5

5

5

6

5

6

5

5

5

5

5

5

5

5

5

5

6

5

6

5

6

5

5

5

5

5

6

5

5

5

6

5

6

5

6

5

5

5

Mean ( image10.png) 5.4

Mean ( image10.png) 5.1

Mean ( image10.png) 5.3

Mean ( image10.png) 5.1

Table4. Current induced in 600 turns from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

5

6

5

5

5

5

5

5

5

5

6

5

5

5

5

5

5

5

5

5

5

5

6

5

4

5

5

5

5

5

5

5

4

6

5

5

4

5

5

5

Mean ( image10.png) 4.2

Mean ( image10.png) 5.2

Mean ( image10.png) 5.3

Mean ( image10.png) 5

Table5. Current induced in 1200 turns from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

11

11

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

11

12

12

12

11

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Mean ( image10.png) 11.9

Mean ( image10.png) 11.7

Mean ( image10.png) 12

Mean ( image10.png) 12

Table6. Current induced in 1200 turns from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

11

11

13

11

12

12

12

12

12

12

11

12

12

12

12

12

13

12

12

12

13

12

12

12

12

12

12

12

10

12

12

12

13

12

12

12

12

12

12

12

Mean ( image10.png) 12

Mean ( image10.png) 11.9

Mean ( image10.png) 12

Mean ( image10.png) 11.9

Table7. Current induced in 3600 × from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

25

20

20

20

24

20

30

20

24

20

25

18

24

20

20

20

25

20

25

19

25

19

25

19

25

20

25

20

27

19

25

20

25

20

25

20

26

20

26

21

Mean ( image10.png) 25

Mean ( image10.png) 19.8

Mean ( image10.png) 24.6

Mean ( image10.png) 20.3

Table8. Current induced in 3600 ×from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

21

19

25

20

21

20

25

20

22

19

24

18

22

19

24

20

22

19

24

19

22

18

24

19

22

19

24

19

22

18

21

20

22

18

23

19

22

19

23

19

Mean ( image10.png) 21.8

Mean ( image10.png) 18.8

Mean ( ...read more.

Middle

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3,5

0,4

0,16

3,5

0,4

0,16

3

-0,1

0,01

3

-0,1

0,01

Mean ( image10.png) 3,1

Σ (I-Iaverage)2

0,4

Standard deviation: image13.png=image11.png = image27.png

Table3. Standard deviation        

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

3

0,2

0,04

2

-0,8

0,64

Mean ( image10.png) 2,8

Σ (I-Iaverage)2

1,6

Standard deviation: image13.png=image11.png = image17.png

Table4. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

(I-Iaverage)

(I-Iaverage)2

2

-0,5

0,25

3

0,5

0,25

3

0,5

0,25

2

-0,5

0,25

3

0,5

0,25

2

-0,5

0,25

2,5

0

0

3

0,5

0,25

2

-0,5

0,25

2,5

0

0

Mean ( image10.png) 2.5

Σ (I-Iaverage)2

2

Standard deviation: image13.png=image11.png = image16.png

Table5. Standard deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

Mean ( image10.png) 2.80

Σ (I-Iaverage)2

1,6

Standard deviation: image13.png=image11.png = image17.png

Table6. Standard deviation

Current I (mA) ΔI ±0.5 mA pull out (-)

(I-Iaverage)

(I-Iaverage)2

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

2,5

-0,45

0,2025

3

0,05

0,0025

3

0,05

0,0025

Mean ( image10.png) 2.95

Σ (I-Iaverage)2

0,225

Standard deviation: image13.png=image11.png = image28.png

Table7. Standard deviation

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

4

0,9

0,81

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

Mean ( image10.png) 3.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png = image12.png


Table8. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

2

2

2

2

2

2

2

2

2

2

Mean ( image10.png) 2

Standard deviation: image13.png =  0

Table9. Standard Deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

6

0,6

0,36

5

-0,4

0,16

6

0,6

0,36

6

0,6

0,36

6

0,6

0,36

Mean ( image10.png) 5.4

Σ (I-Iaverage)2

2,4

Standard deviation: image13.png=image11.png = image29.png

Table10. Standard deviation

Current I (mA) ΔI ±0.5 mA pull out (-)

(I-Iaverage)

(I-Iaverage)2

5

-0,1

0,01

6

0,9

0,81

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

Mean ( image10.png) 5.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png = image12.png

Table11. Standard Deviation

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

5

-0,3

0,09

5

-0,3

0,09

5

-0,3

0,09

5

-0,3

0,09

6

0,7

0,49

6

0,7

0,49

5

-0,3

0,09

5

-0,3

0,09

6

0,7

0,49

5

-0,3

0,09

Mean ( image10.png) 5.3

Σ (I-Iaverage)2

2,1

Standard deviation: image13.png=image11.png = image14.png

Table12. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

(I-Iaverage)

(I-Iaverage)2

5

-0,1

0,01

6

0,9

0,81

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

Mean ( image10.png) 5.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png =image12.png

Table13. Standard Deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

4

-0,7

0,49

5

0,3

0,09

4

...read more.

Conclusion

        The difficulties that were encountered in conducting this experiment are releasing or push in the magnets through the solenoid. Sometimes, the position will not push into solenoid, sometimes miss in pushing in and touch the hand (injured). The other was reading the ampere meter. The accuracy of reading the current was not perfect. Sometimes, our eyes make a mistake in reading the current. The other was the possibilities of error in producing the results. The decimal place in ampere meter cannot be shown and it will improve our results.

        My suggestion in conducting experiment is to change the better and modern ampere meter and learning how to read the ampere meter. Other suggestion is to use safety hand equipment for avoiding injured when the magnets push in to solenoid. For making the results perfect, maybe more trials should be done to make the accuracy and results better. For this suggestion, maybe can improve a lot and for better results in doing this kind of experiment and for avoiding some errors too.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Related International Baccalaureate Physics essays

  1. Factors affecting an electromagnet

    Upon completion of the lab, students are the required to list all the possible systematic and random errors that were encountered in the lab. They also have to write up a conclusion which requires support and evidence from the data obtained, and which justifies the hypothesis.

  2. In this extended essay, I will be investigating projectile motion via studying the movement ...

    From the Graph 1 and Graph 2, all experimental range values obtained are less than the theoretical ones although their differences vary. The experimental ranges almost resemble a straight line. Interpretation of the graphs It is clear from the above graphs that the data collected via experimental method does not match the theoretical hypothesis very accurately.

  1. Verification of the earth's gravitational field strength

    But before we can do that we have to square T. When T is squared we find the constant by dividing T by L. When the constant is found we divide 4?2 by constant to find g. E.g. for 0,5m -->T2=2.24--> K (constant)=T2/L=2.24/0.5= 4.48 therefore, G=4?2/4.48= 8.82 Table showing the values of g obtained by our experiment.

  2. Investigate the Strength of Straw.

    Tough or toughness means undergoes considerable plastic deformation before it breaks. Consequently, tough materials absorb a great deal of energy before they break. In the experiment, when choosing a material it is always important to consider how the material behave under the conditions in which it will be used.

  1. Light Intensity Investigation

    We also did not account for the light emitted from the light bulbs used by other groups during their trials- illuminated light that was potentially detected by our light sensor.

  2. IB Physics Design Lab - Does the temperature a bar magnet is exposed to ...

    This ensures that there are no discrepancies in results. Final Temperature of Magnet After heating (or cooling) once the magnet is brought out of the water bath, it will immediately start to come back towards room temperature, invariably affecting their magnetic field strength, causing the results to become inaccurate.

  1. HL Physics Revision Notes

    Outline the reasons for power losses in transmission line and real transformers Resistance of the windings of a transformers result in it warming up Hysteresis losses cause the iron core to warm up as a reult of the continued cycl of changes to its magnetism Flux losses Explain the use

  2. How does the sinkage depth of a tyre affect its rolling resistance ?

    On the trail of sand bed approximately 750cm3 of tap water had been added to reduce the elasticity of the sand and to make sure that the sand retains the tire tracks after the bicycle was dragged though the sand.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work