• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27
  28. 28
    28

Investigating electromagnetic induction

Extracts from this document...

Introduction

Investigating electromagnetic induction

Aim:

  • To investigate the factors that cause electromagnetic induction in a coil
  • To investigate the effect of the number of turns in a solenoid and the order of a magnet bar is inserted (whether it’s pushed or pulled out) to the current induced in the electromagnet

Hypothesis:

Number of turns in solenoid will make the effect to the strength of the current induced and the order which the magnet is pulled out or pushed in will affect the direction of the induced electromagnetic field image08.png

Variables:

Dependent

Independent

Controlled

Current

  • Number of turns in solenoid
  • Order of magnet inserted

Same magnet

Apparatus:

Item

Quantity

Accuracy

Styrofoam

1

-

Solenoid

4

-

Magnet

1

-

Ruler

1

± 1 cm

Cable

As needed

-

Ampere meter

1

-

Diagram

image09.pngimage00.png

image01.png

image02.pngimage03.png

image04.png

image06.pngimage07.pngimage05.png

Methods:

  1. Firstly, set up all materials that we need as the diagram shown
  2. Then, drop the north end of a bar magnet towards the coils and insert it to the end for 10 times
  3. Observe and record the reading on ammeter
  4. Repeat it with bringing south pole towards and into the coil for 10 times
  5. Change the bar magnets with bigger intensity (600×, 1200×, 3600×)
  6. Observe and record data about the changes

Results / data collection:

Table1. Current induced in 300 turns from 10 cm

North

South

Current ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

3

3

3

2

3.5

3

3

3

2

3

3

3

3

3

3

2

2

3

3

3

2

3

3

2

2

3,5

3

2,5

3

3,5

2

3

2

3

3

2

2

3

2

2,5

Mean ( image10.png) 2.1

Mean ( image10.png) 3.1

Mean ( image10.png) 2.8

Mean ( image10.png) 2.5

Table2. Current induced in 300 turns, from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

3

3

3

2

3

3

3

2

3

3

3

2

3

3

3

2

2

3

4

2

3

3

3

2

3

3

3

2

3

2,5

3

2

3

3

3

2

2

3

3

2

Mean ( image10.png) 2.80

Mean ( image10.png) 2.95

Mean ( image10.png) 3.1

Mean ( image10.png) 2

Table.3 current induced in 600 turns from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

5

5

5

5

5

6

5

6

5

5

5

5

5

5

5

5

5

5

6

5

6

5

6

5

5

5

5

5

6

5

5

5

6

5

6

5

6

5

5

5

Mean ( image10.png) 5.4

Mean ( image10.png) 5.1

Mean ( image10.png) 5.3

Mean ( image10.png) 5.1

Table4. Current induced in 600 turns from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

5

6

5

5

5

5

5

5

5

5

6

5

5

5

5

5

5

5

5

5

5

5

6

5

4

5

5

5

5

5

5

5

4

6

5

5

4

5

5

5

Mean ( image10.png) 4.2

Mean ( image10.png) 5.2

Mean ( image10.png) 5.3

Mean ( image10.png) 5

Table5. Current induced in 1200 turns from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

11

11

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

11

12

12

12

11

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Mean ( image10.png) 11.9

Mean ( image10.png) 11.7

Mean ( image10.png) 12

Mean ( image10.png) 12

Table6. Current induced in 1200 turns from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

11

11

13

11

12

12

12

12

12

12

11

12

12

12

12

12

13

12

12

12

13

12

12

12

12

12

12

12

10

12

12

12

13

12

12

12

12

12

12

12

Mean ( image10.png) 12

Mean ( image10.png) 11.9

Mean ( image10.png) 12

Mean ( image10.png) 11.9

Table7. Current induced in 3600 × from 10 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

25

20

20

20

24

20

30

20

24

20

25

18

24

20

20

20

25

20

25

19

25

19

25

19

25

20

25

20

27

19

25

20

25

20

25

20

26

20

26

21

Mean ( image10.png) 25

Mean ( image10.png) 19.8

Mean ( image10.png) 24.6

Mean ( image10.png) 20.3

Table8. Current induced in 3600 ×from 15 cm

North

South

Current  ΔI ±0.5 mA push in (+)

Current I (mA) ΔI ±0.5 mA pull out (-)

Current  (mA) ΔI ±0.5 mA push in (-)

Current  (mA) ΔI ±0.5 mA pull out (+)

21

19

25

20

21

20

25

20

22

19

24

18

22

19

24

20

22

19

24

19

22

18

24

19

22

19

24

19

22

18

21

20

22

18

23

19

22

19

23

19

Mean ( image10.png) 21.8

Mean ( image10.png) 18.8

Mean ( ...read more.

Middle

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3,5

0,4

0,16

3,5

0,4

0,16

3

-0,1

0,01

3

-0,1

0,01

Mean ( image10.png) 3,1

Σ (I-Iaverage)2

0,4

Standard deviation: image13.png=image11.png = image27.png

Table3. Standard deviation        

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

3

0,2

0,04

2

-0,8

0,64

Mean ( image10.png) 2,8

Σ (I-Iaverage)2

1,6

Standard deviation: image13.png=image11.png = image17.png

Table4. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

(I-Iaverage)

(I-Iaverage)2

2

-0,5

0,25

3

0,5

0,25

3

0,5

0,25

2

-0,5

0,25

3

0,5

0,25

2

-0,5

0,25

2,5

0

0

3

0,5

0,25

2

-0,5

0,25

2,5

0

0

Mean ( image10.png) 2.5

Σ (I-Iaverage)2

2

Standard deviation: image13.png=image11.png = image16.png

Table5. Standard deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

3

0,2

0,04

2

-0,8

0,64

Mean ( image10.png) 2.80

Σ (I-Iaverage)2

1,6

Standard deviation: image13.png=image11.png = image17.png

Table6. Standard deviation

Current I (mA) ΔI ±0.5 mA pull out (-)

(I-Iaverage)

(I-Iaverage)2

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

3

0,05

0,0025

2,5

-0,45

0,2025

3

0,05

0,0025

3

0,05

0,0025

Mean ( image10.png) 2.95

Σ (I-Iaverage)2

0,225

Standard deviation: image13.png=image11.png = image28.png

Table7. Standard deviation

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

4

0,9

0,81

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

3

-0,1

0,01

Mean ( image10.png) 3.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png = image12.png


Table8. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

2

2

2

2

2

2

2

2

2

2

Mean ( image10.png) 2

Standard deviation: image13.png =  0

Table9. Standard Deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

5

-0,4

0,16

6

0,6

0,36

5

-0,4

0,16

6

0,6

0,36

6

0,6

0,36

6

0,6

0,36

Mean ( image10.png) 5.4

Σ (I-Iaverage)2

2,4

Standard deviation: image13.png=image11.png = image29.png

Table10. Standard deviation

Current I (mA) ΔI ±0.5 mA pull out (-)

(I-Iaverage)

(I-Iaverage)2

5

-0,1

0,01

6

0,9

0,81

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

Mean ( image10.png) 5.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png = image12.png

Table11. Standard Deviation

Current  (mA) ΔI ±0.5 mA push in (-)

(I-Iaverage)

(I-Iaverage)2

5

-0,3

0,09

5

-0,3

0,09

5

-0,3

0,09

5

-0,3

0,09

6

0,7

0,49

6

0,7

0,49

5

-0,3

0,09

5

-0,3

0,09

6

0,7

0,49

5

-0,3

0,09

Mean ( image10.png) 5.3

Σ (I-Iaverage)2

2,1

Standard deviation: image13.png=image11.png = image14.png

Table12. Standard deviation

Current  (mA) ΔI ±0.5 mA pull out (+)

(I-Iaverage)

(I-Iaverage)2

5

-0,1

0,01

6

0,9

0,81

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

5

-0,1

0,01

Mean ( image10.png) 5.1

Σ (I-Iaverage)2

0,9

Standard deviation: image13.png=image11.png =image12.png

Table13. Standard Deviation

Current  ΔI ±0.5 mA push in (+)

(I-Iaverage)

(I-Iaverage)2

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

5

0,3

0,09

4

-0,7

0,49

5

0,3

0,09

4

...read more.

Conclusion

        The difficulties that were encountered in conducting this experiment are releasing or push in the magnets through the solenoid. Sometimes, the position will not push into solenoid, sometimes miss in pushing in and touch the hand (injured). The other was reading the ampere meter. The accuracy of reading the current was not perfect. Sometimes, our eyes make a mistake in reading the current. The other was the possibilities of error in producing the results. The decimal place in ampere meter cannot be shown and it will improve our results.

        My suggestion in conducting experiment is to change the better and modern ampere meter and learning how to read the ampere meter. Other suggestion is to use safety hand equipment for avoiding injured when the magnets push in to solenoid. For making the results perfect, maybe more trials should be done to make the accuracy and results better. For this suggestion, maybe can improve a lot and for better results in doing this kind of experiment and for avoiding some errors too.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Related International Baccalaureate Physics essays

  1. In this extended essay, I will be investigating projectile motion via studying the movement ...

    * A motion detector can be used to measure the projection velocity of the metal ball with a higher degree of accuracy and precision. Nevertheless, uncertainties in the measurements will still remain. However, we can still use the data to estimate how much elastic potential energy stored in the spring

  2. Verification of the earth's gravitational field strength

    Random errors such as reaction time in the stopwatch, reading of the rulers may have been inaccurate, keeping the angle the same was very hard and we might have had a parallax error when trying to keep the two strings parallel to each other.

  1. Investigating the induced emf with the number of windings and different heights

    Since the induced emf and current is proportional to each other, we can choose to investigate the induced emf. However, we got two independent variables, which mean we have to do the experiment twice and change the independent variable for each time.

  2. Factors affecting an electromagnet

    The main question to be answered upon completion of the lab by the students is: "what is the relationship between the current running through the wire and the number of turns that the insulated wire has made on the nail in the electromagnet, and the number of paper clips that the electromagnet can hold.

  1. Light Intensity Investigation

    our data was that we were unable to completely block out the background light coming in through the windows. Although one of the control variables was that all background light would be controlled and minimized largely, we were unable to compile with this as the blinds still let majority of the sun light in.

  2. HL Physics Revision Notes

    Describe the dispersion of EM waves in terms of the dependence of refractive index on wavelength. A prism causes the dispersion of light because the refractive indexes slightly different for each of the different colours Refraction takes place at both surfaces of the prism Red light is bent the least

  1. IB Physics Design Lab - Does the temperature a bar magnet is exposed to ...

    the final temperature of the magnet may be affected, leading to inaccuracies in results across trials. All the magnets will be placed in the water bath for a specific period of time, for example, 3 minutes. This ensures that there are no discrepancies in results.

  2. How does the sinkage depth of a tyre affect its rolling resistance ?

    The main of this experiment was to establish a relationship between sinkage depth of the tire and the rolling resistance it faces . The experiment involved allowing a bicycle , with specific air pressure which was measured using an air pressure gauge , with trainers to roll down a wooden

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work