• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Pendulum Motion

Extracts from this document...

Introduction

Physics Design Lab

Pendulum Motion


PURPOSE:

To determine the relationship between the period of a pendulum and various factors, assessed individually, which are the mass of the pendulum, length of the attached string, and angle of release.

THEORY AND HYPOTHESIS:

Many factors affect the swinging motion of a pendulum. My design lab intends to reach a conclusion on the factors that do, and do not, affect the motion of a pendulum. I hypothesize that the mass of the pendulum will not affect the period because the acceleration of gravity is the same for all masses on Earth. The length of the string will affect the period because it affects the distance that the pendulum travels. The angle of release should also affect the period because it also changes the distance the pendulum travels in a period.

MATERIALS:

  • ruler
  • string cotton
  • pen
  • masking tape
  • ring stand
  • ring clamp
  • weights (15g, 20g, 60g, 100g, 200g, 500g)
  • centigram balance
  • protractor
  • stopwatch

PROCEDURE:

Part 1 - Set-up

  1. Gather all materials.
  2. Tidy and clean lab table.

Part 2- Mass

  1. Attach ring clamp to ring stand.
  2. Cut a piece of string noticeably longer than 30cm.
  3. Tie the 15g weight to the string.
  4. Adjust the string such that the weight is 30cm from the ring.
  5. Secure string to the ring clamp with tape and hand.
  6. Make sure the pendulum is horizontal (180 degrees to the horizon)
...read more.

Middle

Length l (cm)

Period T (s)

Average period Tavg (s)

10 ±3

0.88±0.5

0.88±0.5

0.81±0.5

0.84±0.5

0.85±0.5

0.85±0.5

20 ±3

1.13±0.5

1.16±0.5

1.16±0.5

1.12±0.5

1.12±0.5

1.14±0.5

30 ±3

1.35±0.5

1.35±0.5

1.31±0.5

1.35±0.5

1.32±0.5

1.34±0.5

40 ±3

1.50±0.5

1.50±0.5

1.47±0.5

1.50±0.5

1.47±0.5

1.49±0.5

50 ±3

1.72±0.5

1.68±0.5

1.75±0.5

1.65±0.5

1.69±0.5

1.70±0.5

Table 3 – The affect of angles on period

(Note: mass of weight is 100g; length of rope is 30 cm)

Angles a (degrees °)

Period T (s)

Average period Tavg (s)

180±5

1.34±0.5

1.34±0.5

1.37±0.5

1.31±0.5

1.31±0.5

1.33±0.5

195±5

1.25±0.5

1.22±0.5

1.21±0.5

1.23±0.5

1.25±0.5

1.23±0.5

210±5

1.15±0.5

1.21±0.5

1.22±0.5

1.16±0.5

1.16±0.5

1.18±0.5

225±5

1.16±0.5

1.13±0.5

1.13±0.5

1.15±0.5

1.13±0.5

1.14±0.5

240±5

1.12±0.5

1.13±0.5

1.06±0.5

1.09±0.5

1.10±0.5

1.11±0.5

255±5

0.97±0.5

1.00±0.5

1.06±0.5

0.97±0.5

1.00±0.5

1.00±0.5


OBSERVATIONS:

Graph 1, 2, 3, and 4 attached.

...read more.

Conclusion

-4 s/g (m) + 0s) represents the length of the period as a function of the mass; as we can see from the equation, the mass will not have a significant impact on the period of the pendulum motion.

There is no accepted value for this design lab; therefore, it is inappropriate to designate an arbitrary value to compare to my measured value.

SOURCES OF UNCERTAINTY:

  • human error (timing, angles, length of string)
  • timing – ±0.5s (biggest difference out of 5 values)
  • angles - ±5° (protractor was accurate but it was sometimes hard to read)
  • length of string - ±3cm (we measured the specified length of string before taping and tying the rope, creating room for error)
  • air resistance
  • negligible, but clearly relevant in Graph 1 and Graph 2
  • friction in the ring clamp
  • the curved shape of the clamp
  • I chose to record each period separately as opposed to dividing a total number of periods by its swings because I believe that he extra swings would bring in many unknown factors into the system such as momentum. By recording each swing separately, I can make sure that each swing is clean and the weights will not sway or jump. However, multiple timings can create more room for error; therefore I made up for the lost accuracy by increasing my uncertainty in timing.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Aim: ...

    The forces that were most important in this experiment were the forces of gravity and friction. Gravity pulls all objects down to the surface at an acceleration of 9.8m/s�. And the friction that the cart experienced was increased as the angle increased, making it come down at a greater acceleration.

  2. Investigate the factors affecting the period of a double string pendulum

    * To avoid human error, I will use the same person all throughout the investigation and to use the digital timer therefore the human reaction time will be accounted for only on person (that is myself). Thus my error as my human reaction speed when timing the period will of the metal bar will be kept constant.

  1. Analyzing Uniform Circular Motion

    Thus, it is beneficial to create a graph between Mh rather than F itself which compiles of Mh times the accepted value of acceleration due to gravity, only indirectly describing the relation between Mh and f.) Controlled Variables: Spinning mass = 0.01356 � 0.00001 kg Radius = 0.53 +/- 0.0005

  2. Experiment on looking at enthalpy of solutions

    17,20 17,15 66,00 17,10 17,30 17,20 67,00 17,00 17,30 17,15 68,00 17,00 17,30 17,15 69,00 17,00 17,30 17,15 70,00 17,00 17,30 17,15 71,00 17,00 17,30 17,15 72,00 17,00 17,30 17,15 73,00 17,10 17,30 17,20 74,00 17,10 17,30 17,20 75,00 17,10 17,30 17,20 76,00 17,10 17,40 17,25 77,00 17,10 17,40 17,25

  1. Determination of Coefficient of Friction

    The percentage discrepancy compared with the literature's was 0% what is a great achievement, but however the percentage uncertainty was 100%. In the second part discrepancy was 45% and percentage uncertainty was 27%. The percentage uncertainty of the static friction coefficient is quite good, but still the result and determined coefficient is quite far from given literature's value.

  2. Investigating the Oscillations of an Obstructed Pendulum

    If a ceiling fan or an A/C is turned on, this could seriously hamper the experiment. The only possible way to eliminate the random error of reaction time would be to make the entire process mechanized and computerized. If an electronic timer was used where a laser would be able

  1. Horizontal Circular Motion Lab

    objects? friction to a minimum, but the design and equipment used in the lab is limited, in reality, there must have been thermal energy lost in the process. The second assumption is that the rubber stopper travelled in perfect horizontal motion with no x directions to it, this assumption was

  2. HL Physics Revision Notes

    Industrialization led to a higher rate of energy usage, leading to industries being developed near to large deposits of fossil fuels. 3 Main fossil fuels are coal, oil and natural gas They are produced by the decomposition of buried animal and plant matter under the pressure of material on top and bacteria.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work