• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Physics Friction Lab Report

Extracts from this document...

Introduction

Coefficient of Friction Lab

Planning B –

Apparatus:

  •  Pulley (minimum friction)
  •  String (minimum friction)
  •  Sandpaper sheet
  •  Wooden block
  •  Various masses (5g, 10g, 20g.. etc)
  •  Mass-hook (holder)
  •  Sticky tape
  •  Electronic scale (one per class)

Method:

  1. Gather all necessary materials listed above
  2. Using the electronic scale, measure the mass of the wooden block and record this, taking into account uncertainties where applicable.
  3. Attach the string to the wooden block, and the other end to a mass-hook.
  4. Place the sheet of sandpaper underneath the block and tape the sheet firmly in place on the table using sticky-tape (also note the exact position of the block on the sheet as we will try to keep that constant throughout)
  5. Screw on the adjustable pulley at one edge of a laboratory table
  6. Hang the mass hook off the table, using the mass pulley – if this already causes the block to move, then place a small weight on top of the block.  You set-up should look the following:
...read more.

Middle

Trial

Normal Reaction Force /N

Force of friction /N

±0.05 N

Average Force of Friction /N

±0.15 N

Friction Coefficient

Avg. Coefficient

± 0.05

1

2.25

1.74

1.74

0.78

0.77

2

1.73

0.77

3

1.74

0.77

Test 3

Trial

Normal Reaction Force /N

Force of friction /N

±0.05 N

Average Force of Friction /N

±0.15 N

Friction Coefficient

Avg. Coefficient

± 0.05

1

3.25

2.51

2.51

0.77

0.77

2

2.51

0.77

3

2.49

0.77

Test 4

Trial

Normal Reaction Force /N

...read more.

Conclusion

image03.png

        Note that this will give use the static coefficient of friction, which is different from the dynamic coefficient, but is what we were instructed to find in this particular lab.  To find our average coefficient of static friction, taking into account all the tests and all the trials, we would have (0.76 + 0.77 + 0.77 + 0.78 + 0.79) / 5 = image02.png

image02.png = 0.77 ± 0.05

        On the following page you will find a graph that plots the frictional force Ffr versus the normal reaction force R.  There is a clear linear relationship between the two forces, and this line should, ideally, pass through the origin.  

Uncertainties, and moreover, systematic error, have caused this line shift. For example, the friction of between the puller and the string meant that not all of the weight of the mass was transferred to pull the block, but since this happened every time, the relationship still holds although it is not from the origin.  Moreover, as we continued carrying out this experiment, one must keep in mind that the sandpaper was getting more and more “worn”, which reduces friction for the consequential trials.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. physics lab report. Aim To determine the coefficient of static ...

    This assumption causes error in the readings because at the instant of motion the weight of the hanging masses is slightly greater than the frictional force acting on the block. 6. Not taking a conducting a sufficient number of trials. Improvements 1. Using a more accurate balance: e.g.

  2. Centripetal Force

    with mass 10 g: Table 4.2 Data of Centripetal Force for mass 20 g Time for 10 revolutions (s) Period (T/s) f = 1/T (Hz) f2 Fc (N) 6.47 0.647 1.545595 2.388864 0.528535 0.101778 0.0103587 7.47 0.747 1.338688 1.792086 0.396498 -0.030259 0.0009156 6.91 0.691 1.447178 2.094324 0.463368 0.036611 0.0013404 7.44

  1. Research question: Part A : What is the static friction coefficient of ...

    In determining the kinetic coefficient, the acceleration of the block is needed and it is calculated from the dots marked on the ticker tape. 4. The coefficient is determined by using the formulae of. Results and calculation: Part A; e.g; surfaces : wood / wood Surfaces Vertical height, cm

  2. Experiment on looking at enthalpy of solutions

    21,40 21,35 174,00 21,30 21,40 21,35 175,00 21,30 21,40 21,35 176,00 21,30 21,40 21,35 177,00 21,30 21,40 21,35 178,00 21,20 21,30 21,25 179,00 21,30 21,40 21,35 180,00 21,20 21,30 21,25 181,00 21,20 21,30 21,25 182,00 21,20 21,30 21,25 183,00 21,20 21,30 21,25 184,00 21,20 21,30 21,25 185,00 21,20 21,30 21,25

  1. Determination of Coefficient of Friction

    for every situation: When I added 0 weights, �kinetic = 0.15 / 0.60 = 0.25; When I added 1 weight, �kinetic = 0.30 / 1.60 = 0.1875; When I added 2 weights, �kinetic = 0.50 / 2.60 = 0.1923; When I added 3 weights, �kinetic = 0.65 / 3.60 =

  2. Simple Harmonic Motion Physics HL Lab Report

    accuracy, the string was cut at the marked point with a scissor. Data Collection Radius and length of the hook: Value of the smallest division on the scale (M): 0.1 cm Total no. of divisions on the vernier scale (n): 10 Least count (L.C)

  1. Suspension Bridges. this extended essay is an investigation to study the variation in tension ...

    � 0.003 19.9 0.3785 � 0.003 129.4 15.9 0.3513 � 0.003 16.7 0.3306 � 0.002 Horizontal Distance (x) from the Rigid Support 1 � 0.05 (in cm) Length of the string = 148 cm Length of the string = 152 cm Vertical Distance (y1)

  2. HL Physics Revision Notes

    Decrease in volume results in a smaller space for gas particles to move, and thus a greater frequency of collisions. This results in an increase in pressure. PV/T = PV/T Topic 4 Oscillations and Waves: Examples of oscillations include the swinging of a pendulum Displacement (x)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work