• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Physics lab on propagation of errors. In this experiment I investigated the propagation of errors while calculating the volume of two objects.

Extracts from this document...




                                                     , By Satish Ahuja

In this experiment I investigated the propagation of errors while calculating the volume of two objects. I came to the conclusion that a measuring instrument like a screw gauge has some problematic limitations. This, along with other human factors, introduces uncertainties and errors in the measurement. Careful procedure can minimize these errors but cannot remove them completely. The errors in individual measurements contribute to the result of calculations using the measured quantities. Various precautions need to be taken to minimize errors in measurements and study of how these errors propagate during the various calculations needs to be taken.

The aim of this experiment was to investigate the propagation of errors while calculating the volume of a Cylindrical and a Spherical object.

My experiment included calculating the volume of two objects by two different methods.

 Apparatus: Vernier calipers, given spherical object, given cylindrical object, a measuring cylinder, and string.

...read more.


2 = 11 cm3

200 cm3

211 cm3

3. V3 = 12 cm3

200 cm3

212 cm3

4. V4 = 10 cm3

200 cm3

210 cm3

Therefore, the final volume is (12+11+12+10)/ 4

 = 11.25 cm3.

The error in this case is + 2 cm3.

So volume for the first case is 11.25cm3 + 2 cm3





1. D1 = 2.46 cm

2.4 cm

0.06 cm

2. D2 = 2.46 cm

2.4 cm

0.06 cm

3. D3 = 2.48 cm

2.4 cm

0.08 cm

4. D4 = 2.48 cm

2.4 cm

0.08 cm

5. D5 = 2.46 cm

2.4 cm

0.06 cm

TRUE VALUE = 2.46 cm

Now with the diameter we can calculate the volume of the sphere using the formula for volume of a sphere:

V=4/3 π r3

V = 4/3 x πx (2.46/2)3

Volume = 12.9cm3

The error is equal to thrice the percentage error of the radius as it is cubed.

...read more.


3 = 310 cm3

100 cm

410 cm

4. V4 = 309 cm3

100 cm

409 cm

Thus, the final volume (average) is (311+310+310+309)/ 4 = 310 cm3.

The error is = + 5 cm.

Hence the Volume = 310cm3 +5cm.

For volume of the cylinder

We calculate the volume by the formula V = πr2h

Thus, Volume = πx (9.5/2)2 x 6.4

                        = 305.614 cm3

The error is twice the percent error of the radius. (Since the radius is squared)

Error = 2 (% error of radius)

Error = 2 x (0.01/6.4) x 100

          = 0.03125 % of the volume

Thus, error = (0.03125/100) x 305.614

                   = 0.0955 cm3

Volume of Cylinder = 305.60 +0.096 cm3

I noticed that there is a big difference between both the methods (with the sphere and the cylinder). E.g.: - volume of sphere with water displacement is 10 +1 cm2, but when we use the formula it comes out to be 9.525 + 0.108 cm2. This shows us that with the correct precautions and methods, we can get an answer that has the least possible error and is therefore the most accurate. My expectation regarding the difference was hence right. I found this to be an engaging and eye-opening experiment and I enjoyed doing it. I look forward to more experiments of this type in the future

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. THermal Physics Lab

    0.005L Table #1: Raw data of the temperature of the water and milk Time ( in seconds) + 0.005 Temperature of the hot water (+ 1�C) Temperature of the hot milk (+ 1�C) Temperature of the cooler (+ 1�C) 180 29 32 1 360 26 29 2 540 23 25

  2. Aim: ...

    initial momentum and kinetic energy of the system, and the law of conservation says that the momentum and kinetic energy should be conserved, we can see to what extent we got this correct by calculating the percent difference: For Trial 2 (momentum): (7.61 - 7.3)

  1. Pendulum Lab

    Trial Number Time(s) needed to complete subsequent number of periods 1 period 5 periods 6 periods 10 periods Trial 1 0.9s(�0.1s) 6.8s(�0.1s) 8.31s(�0.1s) 13.74s(�0.1s) Trial 2 1.0s(�0.1s) 6.9s(�0.1s) 8.29s(�0.1s) 13.90s(�0.1s) Trial 3 0.9s(�0.1s) 6.6s(�0.1s) 8.18s(�0.1s) 13.85s(�0.1s) Trial 4 0.8s(�0.1s)

  2. In this experiment, a mechanism is prepared to observe the refraction of light and ...

    The container should be full of water and there shouldn?t be any empty place in the container. Because it can affect the observation of refraction in water. Thus, adding more water to the container to make observations better can make the observation more effective.

  1. HL Physics Revision Notes

    Additional: Ways to record the motion of velocity/acceleration: light gate, strobe photography, ticker timer. 2.2 Forces and Dynamics: Weight = mg Forces include: gravitational force, friction, tension, the normal force, etc In a free-body diagram only one object is chosen and all the forces and shown and labelled.

  2. Experiment to compare the radiation of heat from different objects.

    she is comfortable at to carry out the whole experiment at one temperature which will be constant throughout. Distance of the thermometer- The thermometer should be ideally be placed in the center of the water. If the thermometer is placed at either the sides of the container, this will result

  1. Rolling objects down a ramp Physics LAB

    (102 cm/s) ) Therefore velocity is 0.102 m/s and acceleration is 0.055 611.7 g= 6N (weight) Therefore force of static friction is approximately 22.5 N and the force of friction is approximately 21 N Wooden Block with Sandpaper base It took approximately 1.67 seconds to travel 75 inches. (114 cm/s)

  2. Rocket Physics Lab

    In some trails the rockets did not fly straight. Some obviously wrong values were omitted and those particular trials were performed again. An average distance is taken from the five trails of each rocket. Distance Travelled by different sized paper rockets Full sized paper rocket (m) ± 0.005m ¾ size paper rocket (m)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work