• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Refraction of Light Lab

Extracts from this document...

Introduction

Sasha Zouev.  Lab partner Carric Morris

Physics IB, 09.12.05

The Refraction of Light Lab

Aim:

        To establish the relationship between the angle of incidence and the angle of refraction when light passes from one medium to the other.

Hypothesis:

        From our previous physics classes, we learned that the relationship between the angle of incidence i and the angle of refraction R was            

Sin i     =    λ1      =      v1

                                Sin R    =    λ2      =      v2

        From this we can also say that the ratio sin i / sin R should also remain constant, independent of the i value.  

Furthermore we are also aware of another relationship which links the angles of incidence and refraction to the refractive index of the substance used.  The index of refraction is defined as the speed of light in vacuum divided by the speed of light in the medium.  This relationship is called ‘Snell’s law’.

The law is defined as:                    

Some representative refractive indices. www.wikipedia.org

Material

n at λ=589.3 nm

Vacuum

1 (exactly)

Helium

1.000036

liquid water (20°C)

1.333

ethanol

1.36

glass (typical)

1.5 to 1.9

diamond

2.419

n1 sinλ1 = n2 sinλ2

Where n is the refractive index and λ the corresponding angle.

...read more.

Middle

Table 1.  Light going from air into water

Trial #

angle of incidence (i)

angle of refraction (R)

Sin ( i )

Sin ( R )

Sin i / sin R

(units)

1

20.5 °

15.0 °

.350

.259

1.35

2

32.0 °

23.5 °

.529

.390

1.33

3

40.0 °

29.0 °

.643

.485

1.32

4

51.0 °

36.0 °

.777

.588

1.32

5

67.0 °

44.0 °

.921

.695

1.35

6

80.0 °

48.0 °

.985

.743

1.33

Average sin i / sin R =

1.34

Data Analysis:        

        The results we obtained show that on average, we calculated a sin i over sin R to be 1.34 units.  Also we can say

...read more.

Conclusion

        Sources of error could have appeared when fiddling with the pins and the lamp during the experimental procedure.  The thickness of the ray was not ideal and at times too fat to shine onto one single pin.  Also after the ray was refracted, the brightness of the light ray was significantly duller and often very hard to find and trace.

        Suggested improvements to the experimental procedure include perhaps using a stronger beam of light (maybe laser) so as to better see the angle of refraction.  Likewise, the room in which the experiment is being carried out could be also darker.  Further investigations could include observing other mediums.  Although in my lab group, we chose to work with water, others were investigating glass, plastic and various oils – all of which would give different data and results.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Investigating How The Index Of Refraction Is Affected By Different Temperatures Of Water

    Results Qualitative Results: During the lab, one thing we noticed was that as the ray passed through the Plexiglas filled with water, the ray of was slightly bended and then on the refracted side the ray would be in a different angle each time.

  2. The purpose of this experiment is to determine the refractive index of Perspex plastic. ...

    Example using results from the angle of incident of 10o However, the uncertainty for this trial has no decimal places (refer to Sample Calculations 2)

  1. Index of Refraction lab

    The materials that would be required is - a light source, a plexiglass, a graph paper which tells the angle. Procedure: 1. Obtain all the materials and set it up as shown in the above diagram. 2. Keep the light source 1cm away from the start of the graph paper

  2. Physics lab - Cantilever Beam

    [so =] Hence, = ] The y- intercept is -10.89, Conclusion: From the graphs, I can conclude that the depression of the cantilever beam is not affected by the change of weight.

  1. Ohm's Law lab

    DCP Graph 1.2 - Graph showing the plotted readings for the bulb filament immersed in water with the ammeter reading (A) on the y-axis and the voltmeter reading on the x-axis and showing line of best fit. Error bars cannot be shown as the magnitude of error � (1 - 5)% is insignificant on the graph.

  2. Incandescent 100 watt light bulb ban: A bright Idea ?

    to replace them. Also as LED is a developing technology, it is still pretty expensive to get your hands on one (Stevens). In the future this will be the bulb of choice for most applications in the home and work place. Luminous efficacy is measured in lumens per watt (LPW).

  1. HL Physics Revision Notes

    Each time protons and neutrons are added, they must go into higher energy state, and eventually become unstable. Unstable nuclei emit alpha particles (two protons and two neutrons) in order to reach a more stable state. Half Life: Radioactive decay is a random process not affected by external conditions.

  2. In this experiment, a mechanism is prepared to observe the refraction of light and ...

    Table 2: Sine of angles of light with y-axis in medium of air and water for each trial Uncertainty calculation of sine of angles which are shown above in Table 2: For Trial 1: Snell?s Law: When the light passes from one transparent medium to another, it bend according to Snell?s law which states that;[2] 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work