• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To test the ohmic and non-ohmic behavior in a resistor and a bulb

Extracts from this document...


Shiba Younus

To test the ohmic and non-ohmic behavior in a resistor and a bulb

Ohm’s Law: When the temperature of a metallic conductor is kept constant, the current through the conductor is proportional to the potential difference across it; I α V. This statement is known as Ohm’s law. Materials obeying Ohm’s law thus have a constant resistance at constant temperature. A graph of I (current) versus V (voltage) gives a straight line through the origin if the material obeys Ohm’s law. Most materials obey Ohm’s law at low temperatures, but as temperature increases deviations from this law are seen.

Experiment 1: Aim: To test a bulb for ohmic or non-ohmic behavior.

Hypothesis: It is presumed that the light bulb will obey Ohm’s law as long as the current through it is small.

...read more.












Lamp broken


Calculation 1:  R = V/I

  1.  R = 0.0736
  2. R = 0.0990
  3. R = 0.120
  4. R = 0.135
  5. R = 0.148
  6. R = 0.161
  7. R = 0.172
  8. R = 0.183
  9. R = 0.199

Experiment 2: Aim: To test a resistor for ohmic or non-ohmic behavior.

Hypothesis: It is presumed that the resistor will show an ohmic behavior i.e. the voltage across the resistor is presumed to be proportional to the current through it.


  • Resistor (Brown, black, black, brown, gold): 1000 Ω ± 5%
  • Power supply
  • Voltmeter
  • Ammeter
  • Wires
  • Clamps


Dependent variables: current

Independent variables: voltage

Controlled variables: Resistor, ammeter, voltmeter, power supply, wires


  1. A wire was connected from power supply to (mA) outlet of the ammeter.
  2. A second wire was connected from (com) outlet of ammeter to the resistor via a clamp.
  3. A third wire was connected from power supply to the resistor with the help of another clamp.
  4. Two wires were connected from resistor to voltmeter in parallel. One to (V) outlet and another to (com) outlet.
...read more.


Improvement: In this experiment, the ohmic or non-ohmic behavior was tested using only one bulb and one resistor. For a better conclusion it might be reasonable to test ohm’s law with more than one bulb and resistor.

Conclusion: Experiment one: From the discussion and introduction, it could be concluded that the bulb shows a non-ohmic behavior since with increasing current, the temperature inside it increases and so does the resistance. The hypothesis is in agreement with the result, except for the fact that in this case, the bulb does not show any ohmic behavior initially either.

Experiment two: As mentioned earlier in the discussion, the resistor shows an ohmic behavior since increasing current does not lead to a significant increase in temperature in this case, and hence the resistance remains constant throughout the experiment. The hypothesis holds true with respect to the result gained from the experiment.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Hooke's Law

    Hooke's law and using Microsoft excel with drawing the graph and find the gradient. The results showed that the difference value in spring constant means that the stiffness of the springs is also different.

  2. design of a variable resistor

    Connect the thinnest wire to the orange part on the diagram 4. Record the voltage and ampere 5. Repeat the experiment with other two wires ( different thickness) 6. Repeat steps 1~5 twice 7. Calculate the resistance using Ohm's Law.

  1. Incandescent 100 watt light bulb ban: A bright Idea ?

    Starting price: Incandescent 60 watts - 0.60 $ CFL 13 watt - 3.00 $ GeoBulb 7 watt - 120 $ ZetaLux 7 watt - 50 $ Most light bulbs can be split in to two groups. Light bulbs with filament and light bulbs without.

  2. Investigating Wires

    It can also be defined as the ratio of voltage per unit current through it, R=V/I. We know that the resistance in metals is mainly caused by the collisions of numerous electrons which are constantly vibrating and flowing through the external circuit.

  1. Testing ohms law on a light bulb and a resistor connected to a source ...

    Table 1.1 the current and resistance of a light bulb when the voltage is varied. B .Resistor Voltage(V) Current(milli-amperes) Resistance(?) 0.53�3 2.00�3 265�3 1.60�3 6.00�3 266�3 2.78�3 10.4�3 267�3 4.33�3 16.3�3 265�3 5.84�3 22.0�3 265�3 7.75�3 29.2�3 265�3 9.29�3 35.1�3 264�3 11.16�3 42.2�3 264�3 13.22�3 50.1�3 263�3 14.81�3 56.2�3 263�3

  2. How does the sinkage depth of a tyre affect its rolling resistance ?

    The absolute uncertainties that were obtained in our experiment for the rolling resistance were low , this shows that the values that we have obtained are precise . Performing this experiment at a small scale makes the rolling resistance negliblie.

  1. The purpose of this lab is to prove the discovery of George Ohm, that ...

    multiple alligator clip wires, two 250 Ohm resistors, and a 100 Ohm resistor. 2. Construct a single resistor circuit connecting the energy source, ammeter and resistor using the alligator clip wires while the power is off. 3. Turn on the power and cue it to 1.5 V.

  2. Experiment to show the application of Kirchhoffs Voltage Law & Kirchhoffs Current Law in ...

    Find Kirchoff's second law equations for each of the independent loops of the circuit. 5. Use Linear simultaneous equations as required to find the unknown currents. Objectives 1. To familiarize with computer simulation software (Multisim). 2. To show the application of Kirchhoff?s Voltage Law & Kirchhoff?s Current Law in series, parallel and combination circuits.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work