• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To test the ohmic and non-ohmic behavior in a resistor and a bulb

Extracts from this document...

Introduction

Shiba Younus

To test the ohmic and non-ohmic behavior in a resistor and a bulb

Ohm’s Law: When the temperature of a metallic conductor is kept constant, the current through the conductor is proportional to the potential difference across it; I α V. This statement is known as Ohm’s law. Materials obeying Ohm’s law thus have a constant resistance at constant temperature. A graph of I (current) versus V (voltage) gives a straight line through the origin if the material obeys Ohm’s law. Most materials obey Ohm’s law at low temperatures, but as temperature increases deviations from this law are seen.

Experiment 1: Aim: To test a bulb for ohmic or non-ohmic behavior.

Hypothesis: It is presumed that the light bulb will obey Ohm’s law as long as the current through it is small.

...read more.

Middle

67.5

12.07

74.6

14.06

81.3

16.02

87.2

18.02

90.5

20.93

Lamp broken

image01.png

Calculation 1:  R = V/I

  1.  R = 0.0736
  2. R = 0.0990
  3. R = 0.120
  4. R = 0.135
  5. R = 0.148
  6. R = 0.161
  7. R = 0.172
  8. R = 0.183
  9. R = 0.199

Experiment 2: Aim: To test a resistor for ohmic or non-ohmic behavior.

Hypothesis: It is presumed that the resistor will show an ohmic behavior i.e. the voltage across the resistor is presumed to be proportional to the current through it.

Material:

  • Resistor (Brown, black, black, brown, gold): 1000 Ω ± 5%
  • Power supply
  • Voltmeter
  • Ammeter
  • Wires
  • Clamps

Variables:

Dependent variables: current

Independent variables: voltage

Controlled variables: Resistor, ammeter, voltmeter, power supply, wires

Method:

  1. A wire was connected from power supply to (mA) outlet of the ammeter.
  2. A second wire was connected from (com) outlet of ammeter to the resistor via a clamp.
  3. A third wire was connected from power supply to the resistor with the help of another clamp.
  4. Two wires were connected from resistor to voltmeter in parallel. One to (V) outlet and another to (com) outlet.
...read more.

Conclusion

Improvement: In this experiment, the ohmic or non-ohmic behavior was tested using only one bulb and one resistor. For a better conclusion it might be reasonable to test ohm’s law with more than one bulb and resistor.

Conclusion: Experiment one: From the discussion and introduction, it could be concluded that the bulb shows a non-ohmic behavior since with increasing current, the temperature inside it increases and so does the resistance. The hypothesis is in agreement with the result, except for the fact that in this case, the bulb does not show any ohmic behavior initially either.

Experiment two: As mentioned earlier in the discussion, the resistor shows an ohmic behavior since increasing current does not lead to a significant increase in temperature in this case, and hence the resistance remains constant throughout the experiment. The hypothesis holds true with respect to the result gained from the experiment.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Physics essays

  1. Testing ohms law on a light bulb and a resistor connected to a source ...

    Table 1.1 the current and resistance of a light bulb when the voltage is varied. B .Resistor Voltage(V) Current(milli-amperes) Resistance(?) 0.53�3 2.00�3 265�3 1.60�3 6.00�3 266�3 2.78�3 10.4�3 267�3 4.33�3 16.3�3 265�3 5.84�3 22.0�3 265�3 7.75�3 29.2�3 265�3 9.29�3 35.1�3 264�3 11.16�3 42.2�3 264�3 13.22�3 50.1�3 263�3 14.81�3 56.2�3 263�3

  2. Investigating Wires

    This is simply because the resistance of the wire will change due to the length of the wire being varied. Controlled (In order for the experiment to be fairly executed, some key variables need to be controlled) Variable Type of variable How and why will it be controlled?

  1. design of a variable resistor

    Connect the thinnest wire to the orange part on the diagram 4. Record the voltage and ampere 5. Repeat the experiment with other two wires ( different thickness) 6. Repeat steps 1~5 twice 7. Calculate the resistance using Ohm's Law.

  2. Incandescent 100 watt light bulb ban: A bright Idea ?

    Starting price: Incandescent 60 watts - 0.60 $ CFL 13 watt - 3.00 $ GeoBulb 7 watt - 120 $ ZetaLux 7 watt - 50 $ Most light bulbs can be split in to two groups. Light bulbs with filament and light bulbs without.

  1. The purpose of this lab is to prove the discovery of George Ohm, that ...

    multiple alligator clip wires, two 250 Ohm resistors, and a 100 Ohm resistor. 2. Construct a single resistor circuit connecting the energy source, ammeter and resistor using the alligator clip wires while the power is off. 3. Turn on the power and cue it to 1.5 V.

  2. Experiment to show the application of Kirchhoffs Voltage Law & Kirchhoffs Current Law in ...

    I3 are all positive in value and the 2 currents leaving the node, I4 and I5 are negative in value. Then this means we can also rewrite the equation as: I1 + I2 + I3 - I4 - I5 = 0 ________________ Kirchoff?s second law that is KVL states that

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work