Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5

An experiment to investigate the change in cell potential with concentration.

Extracts from this document...

Introduction

8/1/04 Emma Duckworth 7E An experiment to investigate the change in cell potential with concentration. Aim: The purpose of this experiment was to investigate how changing the silver ion concentration in a silver half cell affects the potential of the silver electrode. Apparatus: ==> Chemicals/ substances: * Copper (II) sulphate solution * Copper foil * Silver nitrate solution (make up to 6 different concentrations) * Silver wire * Distilled water * Saturated potassium nitrate solution ==> Additional apparatus: * Safety goggles * 7 beakers * 6 pieces of filter paper * High resistance voltmeter * 2 connecting leads with crocodile clips Diagram: Method: ==> Set up the following cell, using 1 M copper (II) sulphate solution and 0.1 M silver nitrate solution, including a voltmeter and a salt bridge: Cu(s) Cu 2+ ((aq), 1M) Ag+ ((aq), x M) Ag(s) ==> Measure the potential difference of the cell with the voltmeter and note its polarity. Remove the salt bridge as soon as possible. ==> Dilute the 0.1 M silver nitrate solution to 0.01 M silver nitrate solution, renew the salt bridge and then measure the potential difference of the cell with this concentration (0.01 M) of silver nitrate solution in the silver half cell. ==> Repeat this for each of the listed concentrations (0.1 M, 0.01 M, 0.001M, 0.0001 M, 0.003 M, 0.00033 M) ...read more.

Middle

(2) The slope on my graph corresponds to the gradient of my line (I drew a line of best fit). Gradient is ?y / ?x = 0.62 -0.52 / -1 - (-3) = 0.09 / 2 = 0. 045 V. In the Nernst equation, the equation that shows the relationship between the potential, E, of a half cell and the standard electrode potential: E = E? + 0.059 V/ z log (Ag+), this gradient corresponds to 0.059 V / z as the Nernst equation fits the general equation for a line y = mx + c. Here, y = E?, x = log (Ag+) and so the gradient must be 0.059 V/ z. ????! Conclusion: From my results and graph the following conclusions can be drawn: ==> When the electrode potential of a cell is not measured under standard conditions and the concentration of the ions in a half cell is not the standard 0.1 M, the electrode potential of the half cell and the potential difference of the whole cell is altered. ==> As ions in a half cell become more concentrated the electrode potential of that half cell and the cell potential both become more positive. ==> When the electrode potential of a half cell is graphed against the log of the concentration of ions in that half cell an increasing straight line is produced showing that the ...read more.

Conclusion

The slope of this graph corresponds to part of the Nernst equation, an equation that links together the cell potential, electrode potential and concentration of ions and so allows for the fact that concentration of ions effects the electrode potential and cell potential.. The equation is: E = E? + 0.059 V/ z log (conc. oxidised/ conc. reduced) (z is the number of electrons transferred when the oxidised species changes into the reduced species - in our case the value is 2 as 2 electrons are transferred.) This means that the electrode potential increases as the concentration of the ions increased by a certain relationship. My results seem to form a sensible pattern so I would assume they are reasonably accurate, but if I were to do this experiment again I would perhaps change the voltmeter and, to investigate the Nernst equation further I could perhaps measure the silver standard electrode potential using a standard hydrogen electrode. (although this may not make any difference) or investigate the effect of pH by changing the pH of solutions in a electrochemical cell that involve hydrogen or hydroxide ions (such as potassium permanganate) . It was very important in this experiment that we kept it a fair test by only changing the concentration of one of the solutions in the cell so that we had the copper cell as a reference point that we could use to calculate the silver electrode potential. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our University Degree Cell Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related University Degree Cell Biology essays

  1. IMMUNOLOGY PRACTICAL: Differential Blood Cell Counts

    Monocytes increase during severe infections, and other conditions. They remove debris and microorganisms by phagocytosis. Its colour resembles that of a lymphocyte, but its cytoplasm is a muddy gray-blue. The nucleus is lobulated, deeply indented or horseshoe-shaped, and has relatively fine chromatins structure.

  2. DNA research paper. The Ligation of EGFP cDNA into pET41a(+)

    through our isolated plasmids in order to determine the presence or absence of inserted plasmids for each of our clones. We set up a total of two digests for each of our three plasmid DNAs isolated earlier from our miniprep, one with NotI/NcoI enzymes and one with just the NcoI enyme for a complete total of six restriction digests.

  1. Discuss how changes in control of the cell cycle contribute to cancer development ...

    p53 is described as the guardian of the genome. Defective p53 genes are involved in the development of over half of all human cancers. If only one p53 gene is deficient there is still functional p53 protein coded for by the other gene, so that mutation of both genes is needed to lose the protective effect.

  2. This experiment was carried out to characterize an enzyme, -amylase by extracting it from ...

    = 23.16 x10 = 231.60µg It was shown that mass of protein in 0.3ml of ?-amylase crude extract used in FC method = 231.60µg, therefore the mass of protein in 30ml of ?-amylase crude extract can be determined since 30ml of ?-amylase was used for the investigation in this experiment.

  1. The purpose of this investigation is to discover whether different respiratory substrates will affect ...

    I will place the delivery tube into the opening of the burette, which will be connected to the conical flask. 6. In my plan I was originally going to use a boiling tube for the yeast/substrate reaction. However I have found out that this reduces the surface area of the

  2. Investigating six different cell types. (spermatozoa smear, squamous epithelium cells, pollen grain, diatoms mixed, ...

    Sperm contains small amount of fructose, ascorbic acid, cholesterol, critic acid, lactic acid, nitrogen, creatine, vitamins B12 and various salts and enzymes. An average sperm swims at the rate of 3mm (0.12inches) per minute. Some sperm swim better than others and they wave their tales more than 1000 times just to swim 1.25cm or half an inch.

  1. An experiment measuring the potential difference generated by various simple electrochemical cells.

    (See diagram). Make sure the 2 electrodes are connected to the correct terminal of the voltmeter - the more reactive/ better reducing agent at the negative terminal (on the left) and the less reactive/ better oxidising agent at the positive terminal (on the right).

  2. Medico-legal Problems of establishing the Time of Death

    The stab may be over the lower ribs and the thermometer inserted within the substance of the liver or alternatively a subcostal stab will allow insertion of the thermometer onto the undersurface of the liver. The body temperature should be recorded as early as conveniently possible.

  • Over 180,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.