• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Does counter-movement effect jump performance and does using the arms further this improvement when performing a vertical jump?

Extracts from this document...

Introduction

Does counter-movement effect jump performance and does using the arms further this improvement when performing a vertical jump? Introduction: Vertical jumping contributes to performance in almost all sports, obviously some sports such as basketball use it a lot more that other sports such as tennis. When performing a motor task such as jumping, human beings typically start with countermovement (CM), CM can be described as a quick bend of the knees during which the body's centre of mass drops before being propelled upwards (Harman et al, 1990). There is evidence to support that task performance is improved with CM, for instance, it has been shown that subjects achieve a greater jump height with CM than without. This is because subjects are able to produce more work and/or use the work more effectively in a countermovement jump (CMJ) than a non-CMJ (Bobbert et al, 1996). Researchers to date have proposed different theories as to why CM has a positive effect on vertical jump performance. Enoka (1988) cited in Harman (1990) proposed the performance enhancing effects of the countermovement is that concentric contraction immediately following an eccentric stretch begins with the muscle already under considerable tension, making more chemical energy available for generation of force. A later study conducted by Harman et al (1990) ...read more.

Middle

VJ no CM 0.271 0.006 2.306 0.026 141.055 1.573 c. VJ leg only + CM 0.562 0.730 -0.846 3.707 -51.733 226.701 d. UBM straight legs 0.024 0.047 -0.302 0.713 -18.480 43.600 Graphs of Mean Results Subject 1 (mean results) Subject 2 (mean results) Figure 1. Max flight height means for Subject 1 Figure 2. Max flight means for Subject 2 Figure 3. Take off Velocity means for Subject 1 Figure 4. Take off Velocity means for Subject 2 Figure 5. Vertical Impulse means for Subject 1 Figure 6. Vertical Impulse Means for Subject 2 Discussion: The results collected for subject 1 was to be expected (see table 1); the subject-performed best in jump a, using CM and arms. This was hypothesised by the writer and supported by numerous researchers, research has concluded that jumping performance can be greatly improved with CM and arms compared to without (Bobbert et al, 1996; Enoka 1988; Harman et al, 1990; Payne 1968; Lees et al, 2004 and Bishop et al, 2004). When comparing jump a (using CM and arms) to jump b (using no-CM) there is a 15% improvement in overall jumping performance in jump a (see table 1). This is supported by Bobbert et al (1996) who found CMJ's produced greater jump heights than non-CMJ's. ...read more.

Conclusion

The participants had not undergone any training prior to completing the study, which could account for the inaccuracy of results produced by subject 2. Prior to completing the study, the participants were not given proper protocols to warm up, this may have subsided the subjects' true performance potentials, Hunter and Marshall (2002) found that flexibility had a positive effect on jump performance. With the performers not properly warmed up the subjects' flexibility would have been limited as a result. Overall, subject 1 confirmed the writer's hypothesis and met the aims of the study, providing evidence that CM increased vertical jump performance, and CM with the use of arms increased vertical jump performance further. Subject 2 did not confirm the writers hypothesis or meet the aims of the study, however, subject 2 has provided a learning curve for future study, providing evidence that recording data correctly and following strict protocols should remain essential when completing further testing. If the experiment were to be repeated 'controls' would have to be enforced to achieve more valid results. A sheet for recording personal details, such as height and weight should be included, reducing the risk of error when obtaining results. More observers could be used to determine whether jumps were performed correctly, and it not being validated till all of them were agreed. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our University Degree Sports Science section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related University Degree Sports Science essays

  1. Nutritional analysis case study

    This second COMP-EAT analysis was compared to the pre intervention results to see if improvements had been made by the dietary modifications. The subject and researcher both discussed the nutritional strategies and agreed that to the goal was to help improve performance in soccer.

  2. Free essay

    A comparison of maximal heart rates derived from prediction equations compared to actual laboratory ...

    were slightly lower than maxHR values obtained for cycle ergometry with a mean of 184.27 bpm (see figure 2). Figure 1: Mean max HR values for arm ergometry using predictive equations and actual measurements Figure 2: Mean max HR values for cycle ergometry using predictive equations and actual measurements Discussion

  1. The Effect of Sports Drinks on Performance.

    This type of drink is suitable for shorter periods of exercise, for pre-race hydrating and for maintaining hydration but not energy over a longer period of time. The second most important ingredient of a sports drink is carbohydrate, according to Dale Brigham.

  2. Free essay

    Sports Biomechanics

    However, is very venerable to horizontal blows, such as those that occur during blocking and tackling in football. 'When thinking of common knee injuries, remember the three Cs: collateral ligaments, cruciate ligaments, and cartilages (menisci)' (Elaine N. Marieb, Katja Hoehn 2007). Most dangerous are lateral blows to the extended knee.

  1. Technical Analysis of elite male soccer players by position and success

    As multiple researchers conducted the analysis, a series of operator training sessions were conducted to ensure all analysists were consistent and accurate in their analysis of events. After this period of training, 2 analysts analysed the first ten minutes of the Championship final alone after having talked through the system beforehand.

  2. A TECHNICAL COMPARISON OF ELITE MALE SOCCER

    Their analysis found significant differences in the frequency of behaviours performed between each of the playing positions', however similarities were apparent in the finds with regards to the outcome of some behaviours. This suggests that while there are obvious differences in the technical demands of each playing position, mere inter-positional

  1. Nike Inc. The topic that I have chosen to do a research project on ...

    The owner punches their time cards after eight hours, but they keep working even though they are never paid overtime. This is a sweatshop. Some of the garments they make were sold at big name stores such as Lord & Taylor.

  2. Physiological Adaptations to Exercise

    When the body engages in exercise training over extended periods each of the physiological systems undergo specific adaptations that increase the body's efficiency and capacity. The magnitude of these changes depends largely on the intensity and duration of the training sessions, the force or load used in training, and the individuals' initial level of fitness.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work