• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

Oxygen Deficit and EPOC consumption during steady state exercise

Extracts from this document...


Oxygen Deficit and EPOC consumption during steady state exercise at low and high intensity. Introduction: Previous research has shown that in the transition from rest to light or moderate exercise, The body's oxygen requirements increase the moment exercise begins and reaches steady state within 1-4 mins, depending on factors such as intensity of the exercise and participants training status (Powers and Howley, 1994; Martin, 1974). Therefore because oxygen requirements and oxygen supply differ during the transition from rest to exercise, the body incurs an oxygen deficit. (Powers and Howley, 1994) described the term 'oxygen deficit' to apply to the delay in oxygen uptake at the beginning of exercise, and has been defined as the difference between oxygen uptake in the first few minutes of exercise and an equal time period after steady state has been obtained. Figure 1. This table shows EPOC and Oxygen Deficit. Krogh and Lindhard (1919) stated that the deficit at the beginning of exercise and recovery oxygen after exercise were essentially equal in size. Hill and Lupton (1923), stated that during the initial minutes of recovery, even though your muscles are no longer actively working, oxygen demands do not immediately decrease. Instead, oxygen consumption remains elevated temporarily. This consumption, which exceeds that usually required when at rest, has traditionally been referred to as oxygen debt. Contemporary theory no longer uses this term. Instead, recovery oxygen uptake or excess post-exercise oxygen consumption (EPOC) ...read more.


was greater than O2 (1.6litres ?0.5) deficit when at low intensity exercise. There is no consistence in relationship between O2 deficit and EPOC. There is a significant difference of P<0.024 for O2 deficit during exercise, however there is no significant difference for EPOC (P<0.414). Figure 5. Mean values of Oxygen Deficit and EPOC consumption at Low and High intensity exercise. Discussion: Results from this study suggest that O2 deficit, EPOC, body temperature, VO2 consumption all increase with high intensity exercise compared to that of low intensity exercise. O2 deficit at low intensity had a group mean of 1.59litres(?0.45) whereas high intensity exercise has a group mean of 3.78 litres (?2.17). The O2 deficit had a significant difference of P<0.009528508, this deficit increased during exercise due to the increased demand exerted on the body. Previous research supports the data collected for O2 deficit, (Powers and Howley, 1994; Martin, 1974; Katch, et al 2001) stated oxygen requirements increase the moment exercise begins, and reaches steady state depending on intensity and the participants personal fitness. High intensity exercise would mean the body's oxygen requirements would increase significantly the moment exercise began, moderate-to-heavy aerobic exercise requires a larger time to reach steady rate, which creates a larger oxygen deficit than less-intense exercise. EPOC at low intensity had a group mean of 2.3litres (? 1.4) whereas high intensity exercise has a group mean of 2.7 litres (? 1.0). The EPOC had no significant difference (P<0.423716921). ...read more.


The results show that VO2 increased markedly on the high intensity exercise compared to that of the low, with significant differences at certain points of the exercise (please refer to results). This is supported by Bahr & Segersted (1991), Brehm & Gutin (1986), Gore and Withers (1990b) and Naughton & Smith (1993) who reported that a threshold exists, between 50% and 75% VO2 max, where exercise begins to significantly increase EPOC. The HR of the participants will be greater in the high intensity due to the body requiring more oxygen via the blood. In this study HR had significant difference of P<0.00 for HR during exercise, and there is a significant difference of P<0.01 for HR during recovery. The results show that HR increased on both intensities, but significantly on the high intensity. Results (continued) Rest During Exercise Post Recovery Heart Rate (bpm) (Low Intensity) 85.5 (?9.3) 123.9 (?12.7) 92.4 (?14.3) Heart Rate (bpm) (High Intensity) 85.8 (?8.8) 165.8 (?7.8) 116.1 (?11.8) Table 2. The mean (?SD) of Heart Rate at Low and High intensity exercise. Rest Post Exercise Post Recovery Temperature ?C (Low Intensity) 36.3 (?0.7) 36.8 (?0.8) 36.4 (?1.0) Temperature ?C (High Intensity) 36.6 (?0.4) 36.9 (?1.1) 36.7 (?1.1) Table 3. The mean (?SD) of Body temperature at Low and High intensity exercise. Oxygen Deficit (litres) EPOC (litres) Low Intensity 1.6 (? 0.5) 2.3 (? 1.4) High Intensity 3.8 (? 2.2) 2.7 (? 1.0) Table 4. The mean (?SD) of Oxygen Deficit and EPOC consumption at Low and High intensity exercise. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our University Degree Sports Science section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related University Degree Sports Science essays

  1. Nutritional analysis case study

    285g and the client specific amount of 589g that takes into account the subject's physical activity and sport completed. At pre intervention the client consumed 49.61g of protein, 89% of the recommended nutrient intake at 55g. However after the interventions had been set the subjects protein intake increased to 89.71g,

  2. The purpose of this experiment is to measure oxygen consumption and ventilation at rest ...

    Unless repeated measurements are made on each individual, it is unlikely that a real VO2 max will have been obtained. The drawback to the sub-maximal approach concerns the accuracy of the extrapolation. As the exercise is sub maximal, motivation becomes less relevant.

  1. Mechanisms of PETCO2 and O2 changes during exercise.

    This is due to an increase of dead space provided by a lack of perfusion of ventilating lung. This increase in dead space dilutes the CO2 and thus a reduction in PETCO2 is seen when compared to healthy individuals (Wasserman, 2004).

  2. Oxygen Uptake and VO2 Consumption When Training

    exercise (Poole et al, 1988 cited in Saunders et al, 2000; Poole et al, 1990 cited in Saunders et al, 2000). The duration of exercise have been found to determine the magnitude of the slow component and the cause of the slow component is the increase in blood lactate levels,

  1. Physical Health and Fitness: What you need to know?

    believe that exercise improved weight loss by enhancing self-esteem and mood, which, in turn, may improve adherence to behavioral weight control strategies. In addition, physical activity in the low-to-moderate range of intensity may maintain or even suppress appetite (Pi-Sunyer, 1992), therefore facilitating long-term dietary adherence and weight loss.

  2. Technical Analysis of elite male soccer players by position and success

    Simply using a frequency count would be not be representative as it does not allow for the different numbers of subjects participating in different positions. This type of representation has been used across other sports (Hughes and Bell, 1998), but is innovative within association football.

  1. Physiological Adaptations to Exercise

    The Aerobic System Aerobic metabolism fuels most of the energy needed for long duration activity such as distance running. It uses oxygen to convert nutrients (carbohydrates, fats, and protein) to ATP. This system is slower than the anaerobic systems because it relies on the circulatory system to transport oxygen to the working muscles before it creates ATP.

  2. Sport industry.The sport industry is important to many people whop work in it and ...

    There are many reasons why people do and don't take part in sport but most of the reasons are significant. Take part in sports. To keep fit and healthy. Live a healthy lifestyle. There are many reasons to take part in sport here are some of them: most people tale

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work