Lines, regions and cross over

Extracts from this essay...


Coursework Title: Lines Candidate name: Shoaib Muhammad Candidate number: 5115 Centre name: Geoffrey Chaucer Technology College Centre number: 10818 Plan Firstly In this coursework I will draw six or more lines which will cross each other and while doing this I hope to get as much crossover points as I can, as well as I will try to get the maximum regions. I will try to avoid any sort of double intersecting i.e. intersecting over a ready made crossover point. I will try and keep all my lines as consistent (placement). To make sure I do this I will draw 1 line and then copy past it and then add another line this will help me keep my lines the same i.e. consistent. But I will vary the number of lines I use. I will draw six line models (each having one more line than the previous one) the first model that I will create will have only one line the second will have two lines the third will have three lines etc. Secondly I will try to figure out the formulas that will find the nth term for the crossover points, open regions, closed regions and the total regions. I also plan to find the relationships / sequence between any two of these characteristics of the line(s).


of Lines 1 2 3 4 5 6 Closed Regions 0 0 1 3 6 10 Total Regions 2 4 7 11 16 22 Difference -2 -4 -6 -8 -10 -12 The nth term The nth term is useful in order to predict the next number in any particular sequence without actually going through the trouble of working it out, which in this case means drawing the lines and counting the number of open regions for example. It can be worked out by using the formula below: A+B (n-1) +0.5(n-1) (n-2) C Where, A = 1st term in the sequences below. B = The 1st difference between the two different terms in the sequences below. C = the 2nd difference in the sequences below which is always constant. Working out the nth term for closed regions Sequence 0 0 1 3 6 10 1st Difference 0 1 2 3 4 2nd Difference 1 1 1 1 Consequently, A = 0 B = 0 C = 1 The equation for closed regions is = 0+0(n+1) +0.5(n-1) (n-2)1 Simplified = (0.5n2)-(1.5n) +1 Formula for nth term = 0.5n2-1.5n+1 Working out the nth term for crossover points Sequence 0 1 3 6 10 15 1st Difference 1 2 3 4 5 2nd Difference 1 1 1 1 Consequently, A = 0 B = 1 C = 1 The equation for crossovers is = 0+1(n+1)


I was able to prove my hypothesis correct and was able to fulfil my aim of working out the nth term for many regions. It took me a while to draw the diagrams as I wanted each crossover to give me the maximum number of open and closed regions. But once I had the diagrams, I simply put the results in a table and then looked for any obvious or underlying sequence. Problems and hurdles I faced while undergoing the investigation: * I had a bit of a problem trying to make sure that I didn't double intersect the lines because if I did that would have ruined all my investigation as it wouldn't have been a fair examination to make sure I didn't do this I double checked all my lines before I went ahead in the investigation. * I also had a bit of a problem trying to find a complex pattern but after a while I managed to find it. How would I improve my investigation next time: * I would give my self a longer time span in order to complete my investigation which will help me enhance the quality of my work. * I would try to find more complex patterns in order for me to do this I will have analyze all my work more carefully.

The above preview is unformatted text

Found what you're looking for?

  • Start learning 29% faster today
  • Over 150,000 essays available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Over 180,000 student essays
  • Every subject and level covered
  • Thousands of essays marked by teachers

Related University Degree Mathematics

  1. Logistics equation. This coursework relates to an investigation and description of the systems ...

    This diagram also shows where the bifurcations occur. Figure 45[1] Figure 46 Figure 46 is a version of our bifurcation diagram, with sample values from the graphs which didn't converge to any steady states.

  2. History and Social Context of Mathematics.

    It appears however that the Egyptians had a difficulty establishing a distinction between exact relationships and approximations. A document found at Edfu indicates a general formula for the area of any quadrilateral. To take the product of the average of opposite sides.

  1. The Fibonacci Sequence and Generalizations

    In fact, the columns of P are the eigenvectors of A corresponding to and , and the non-zero entries in D are the two eigenvalues. The eigenvectors corresponding to the two eigenvalues are computed as follows. For For Let us construct: and , Since A is diagonalizable, = = , (20)

  2. Sequences and series investigation By Neil

    Sequence 20: 2 (202) - 40 + 1 2(400) - 40 + 1 800 - 40 + 1 800 - 49 = 761 Instead of illustrating the pattern I am going to use the method I used at the start of this piece of coursework.

  1. Greek Maths

    He also noted that the total area of the triangles created at each stage is a quarter of area of the triangles constructed in the previous stage.3 Archimedes used this relationship to show that the area of the parabolic segment could be given by the sum of the infinite series, X/4 + X/42 + X/43 + ...

  2. Edgar Allan Poe's The Raven is 108 lines long, and is written introchaic octameter, ...

    and that the narrator is sitting alone next to a fire, attempting, vainly, to dull the pain of his lost Lenore by reading a book. Poe uses auditory imagery- "gently rapping, rapping." The rhythm produced with the repetition of "rapping" produces an imagined sound of a knock at the chamber door with each syllable.

  1. What sampling problems might you have conducting an opinion poll?

    There are two main scientific ways of conducting an opinion poll and achieving a reasonably representative sample. The first used (and slightly less accurate) is the quota method as used by Gallop in 1936. This method attempts to be representative by choosing respondents individually to match the quota of the population as a whole.

  2. The purpose of this coursework is to find the different between the products of ...

    ( x + 64 ) =x ( x + 64 ) + 40 ( x + 64 ) = x2 + 64x + 40x + 2560 = x2 + 104x + 2560 Next (x + 60 ) ( x + 44 )

  • Over 180,000 essays
    written by students
  • Annotated by
    experienced teachers
  • Ideas and feedback to write
    your own great essays

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.