Streaming the future of CAD 

      Ever since the first engineer rotated a 3-D prototype of a product on his computer screen rather than in his hand, the CAD industry has been dreaming of a seamless virtual design process.

      Imagine engineering teams around the world firing up their CAD stations to start designing a new automobile. As each designer works on the various components, the car model starts to take shape. Tooling engineers collaborate on the process as they work on their own pieces of the design. When the design for the motor is complete, testing teams employ finite element analysis packages feeding the results back to the CAD engineers.

      Even the marketing departments are involved. They create presentations of the car from the CAD model and display them on the company's Web site in full interactive 3-D. Feedback from the presentation influences the design. When production begins, the product is designed, the components are tested, and the marketing program is already under way.

      With more than ten years of effort, CAD companies have not been able to deliver this dream of a virtual design process. Ten years is an eternity in any computer-related industry. So what's the hold up? It's certainly not the hardware. Even standard desktop computers are capable of real-time operations on complex CAD models, and CAD systems operate on state of the art equipment. And it's not the connectivity either. Intranets and the Internet connect remote sites around the world.

      No, the problem is more fundamental. CAD models are large, very large. Even models of simple products can reach hundreds of megabytes in size. During the virtual design process these gigantic models have to be transmitted across the already overburdened wires of the Internet, and that's just been impossible — until now.

      Over the past few years, a new technology has emerged that has the potential to realize the virtual design process. The technology is streaming 3-D, and it is already solving major problems in the CAD industry. Streaming 3-D allows 3-D data, like the data composing CAD models, to be transmitted across networks incrementally rather than all at once. As a user views and manipulates a model, the streaming 3-D technology automatically downloads the portions the user can see. This technique allows a user to operate on highly complex models right over the Internet.

      Suppose a plant design firm is designing a factory for a client. The firm wants to display the factory design in 3-D on their Web site so that the client can view the work in progress. The CAD file representing the factory is over 500 megabytes. The client cannot view the design because downloading 500 megabytes over the Internet is unworkable. But, why should the client download the entire factory, when he can only see a small portion at any given time? A streaming 3-D technology only needs to download the portions of the factory that the client can see.

Join now!

      For example, as the client navigates through the factory, a piece of machinery comes into view. This machinery is first downloaded and displayed at low detail. As the user approaches the machinery, additional detail is downloaded, and the visual quality of the machinery improves. Relatively little data is required to display any particular view of the factory. For this reason, streaming 3-D allows the user to navigate through the 500-megabyte factory model over an extremely slow network connection, such as a 28.8 Kbps modem.

Screen shot using SolidWorks; courtesy of RealityWave Inc

  ...

This is a preview of the whole essay