• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Hooke's law lab report. Hookes law and the investigation of spring constant k

Extracts from this document...

Introduction

Hooke’s law and the investigation of spring constant k

  • Aim

To examine Hooke’s law and to determine the value of spring constant k.

  • Introduction

Robert Hooke (1635-1708) was born at Freshwater, Isle of Wight, son of John Hooke, curate at All Saints' Church [1]. He was one of the most brilliant and versatile of seventeenth-century English scientists,who discovered the law of elasticity.Between 1658 and 1678 Robert Hooke worked on his invention of the watch-spring and developed his theory of elasticity, now known as Hooke’s law.[2]Hooke’s law states that "the extension of a helical spring is directly proportional to the weight applied, provided the elastic limit of the spring is not exceeded." [3]However, the limitation of this law is if the spring is stretched beyond its elastic limit, meaning that there is a limit to a spring where if you stretch it too much it will deform, thus the spring will have a new spring constant.[4] Below is the equation of Hooke’s law:

*

...read more.

Middle

This is a specific form of Hooke’s law ofelasticity.

  • Method

The equipments needed in the experiment are a spring; a number of weights which each of them  is 100gram heavy; a meter ruler; a ring stand; clamps; notebook and pencil. They were placed as shown in the diagram.

To begin the investigation, the spring was attached to the ring stand. Next, two of the 100-gram loads were hung under the spring and the ruler was used to measure the extension of this spring. Subsequently, 2 more loads were added and the process of measurement was repeated. The number of loads was continuously increased until the total mass reached 1 kg. Between each

...read more.

Conclusion

R2 is also close to 1, which implies that the trend line is very linear. During the experiment, astonishing situations did not arise, or no anomalous features of data found. However, the spring sometimes was unstable as it moved up and down, especially when the weight was just added, making it hard to check the extension. Therefore, the errors which occurred should be mainly due to parallax. The solution to this problem could be waiting for the spring to be stable, then do the measurement.
  • References

[1]Introduction. http://www.roberthooke.org.uk/intro.htm

[Accessed 7th March 2012]

[2]Robert Hooke.http://www.britannica.com/EBchecked/topic/271280/Robert-Hooke

[Accessed 7th March 2012]

[3]It’s a spring thing. http://www.hookeslaw.com/hookeslaw.htm

[Accessed 7th March 2012]

[4]Hooke’s law.http://ffden-2.phys.uaf.edu/211_fall2002.web.dir/Jones_Kevin/hookeslaw.html

[Accessed 7th March 2012]

[5]Robert Hooke, Hooke's Law & the Watch Spring http://www1.umn.edu/ships/modules/phys/hooke/hooke.htm

[Accessed 7th March 2012]

[6]Physics 1 Dynamics Experiment How Does A Spring Scale Work? Hooke's Lawhttp://www.batesville.k12.in.us/physics/phynet/mechanics/newton3/Labs/SpringScale.html

[Accessed 3rd March 2012]

...read more.

This student written piece of work is one of many that can be found in our University Degree Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related University Degree Physics essays

  1. Torque Physics Lab Report. The purpose of this experiment was to help understand ...

    = m*g Position on meter stick (cm) r= position from axis of rotation (m) (N*m) - F1 0.980 20.0 .311 -0.305 + F2 0.490 70.0 .189 0.093 + F3 0.490 90.0 .389 0.191 F4 1.68 51.1 0 0 F5 -3.91 51.1 0 0 Part IV Observation and confirmation Spring and

  2. Free essay

    Measurement of gravity using a rigid pendulum

    Before timing a very large amount of oscillations, we estimated an intermediary number of oscillations to measure, so as to check the value for T over a large amount of oscillations. This intermediary amount was estimated to be 36 oscillations.

  1. Medical Physics

    The computer varies the intensity of the X-rays in order to scan each type of tissue. Once the patient has passed though the machine, the computer combines all the information from each scan to form a detailed image of the body.

  2. Investigating factors which affect the period time of a simple pendulum

    The string is tied securely to the boss clamp and the other end is connected to the 100g mass. The protractor is taped to the top of the boss clamp to accurately measure the angle of release. The G clamp holds the stand to ensure that the pendulum does not cause the stand to move and affect the results.

  1. The aim of this experiment was to set up, calibrate and use a model ...

    = P(X>Z) Z = (899.768- 898.1) / 0.7840 <-- this stage converts it into a Z(0,1) Normal distribution. Therefore Z = 2.12755102 Therefore the probability that P(X>2.12755102) = 0.0167 or 1.67% At the Significance level 5% as it is a two tailed test, 1.67% < 2.5% therefore at the 5%

  2. Free essay

    Semiconductor bandgap Report. In this work, transmission spectroscopy was used under continuous light ...

    The absorptions edges were then analyzed by taking readings over these wavelength regions in smaller increments for the corresponding semiconductors. Tables of these results may be found in figure 7.2 and figure 7.3 in the appendix. The following graph for the absorption edge of GaAs was obtained.( Graph of GaP can be found in figure 7.4 the appendix)

  1. The three different crystallographic planes shown are for a unit cell of a hypothetical ...

    edge lengths of the unit cells of lithium and aluminum into the above formula, we can obtain the volumes of the unit cells of lithium and aluminum: with significant figures applied with significant figures applied where (Volume/unit_cell) Lithium is the volume of a unit cell of lithium and (Volume/unit_cell)

  2. The Current Balance

    The telescope was aimed at the current balance mirror, but it was not focused on the mirror. While one person was looking through the telescope another person was able to slowly move the current balance base on the table until a reflection of the scale was seen in the telescope.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work