• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8

# Torque Physics Lab Report. The purpose of this experiment was to help understand torque by not only measuring it but also by manipulating and adjusting the weights experimentally.

Extracts from this document...

Introduction

Experiment 7: Torque Physics 1100-ETR6B: Professor Viraht Sahni 10/18/2011 Emily Callejo and Max Vlasyuk Objective The purpose of this experiment was to help understand torque by not only measuring it but also by manipulating and adjusting the weights experimentally. Procedure In order to perform all the procedures a few instruments were required a meter stick, a triple beam balance, suspension clamps and their stirrups, a knife edge, as well as weights of 50 and 100 grams and a spring scale. The meter stick was weighed (without the clamp), and its center of gravity was found (it's not usually exactly at 50cm), the 6 clamps were weighed as well. For the first part the meter stick was put on 35cm and a 100g weight was adjusted until the center of balance was found, the position was recorded, this was than done with 150g and 50g. Once the values were recorded the weight of the bar was calculated and the average was found. For the next part of the experiment three weights were attached anywhere on the bar, the center one was adjusted till there was equilibrium and than the force was measured with a spring scale. ...read more.

Middle

Position (cm) Force (N) = m*g Force Down F1 0.100 25.0 0.980 F2 0.100 44.0 0.980 F3 0.171 48.5 1.68 F4 0.050 58 0.490 F5 0.050 78 0.490 Force Up (spring) F6 0.300 90 -2.94 Table 5: Torque Table Direction of Torque Force # Force (N) = m*g Position on meter stick (cm) r= position from axis of rotation (m) (N*m) + F1 0.980 25.0 0.15 0.147 + F2 0.980 44.0 0.34 0.333 + F3 1.68 48.5 0.385 0.646 + F4 0.490 58.0 0.48 0.235 + F5 0.490 78.0 0.68 0.333 - F6 -2.94 90.0 0.80 -1.96 Questions: The motion of the rigid system will move up in the counter clockwise direction if the condition for equilibrium is not satisfied in which the spring has greater force. The opposite will happen if the meter bar and weights have a greater force than the spring. The same goes for the Torque. If the second condition for equilibrium is not satisfied and there is greater torque of the spring, the system will move in the counter clockwise motion and will move clockwise if the Torque is greater for the meter bar. ...read more.

Conclusion

This percent error is low enough to be negligible and to confirm the equation used for Part II. In Part III and IV, the forces acting on the meter stick are in the vertical direction. Since the meter stick was level, the angle was 180 degrees meaning the force acted on the axis on either side of the center of balance. The experiment should have observed that the net force and net torque acting on the meter stick is equaled to zero. However, experimental results show that the net force is not zero. The net torque is not zero as well. However, the net torque value approaches zero more than the experimental values do. Therefore, the torque equation may be confirmed in this experiment, but the force equation cannot because the values are too far from zero. This may be because the presence of error in this lab is high. Errors occurred in this lab are due to inaccurate measurements of position. It was difficult to keep the meter bar steady to find where the stick is level. Also, there may have been something wrong with the balance and springs because they are very old, rusted equipment and may not work as accurately as they did when they were new. Overall, we were able to understand the concept of torque, even if there were errors in our experiment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our University Degree Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related University Degree Physics essays

1. ## Hooke's law lab report. Hookes law and the investigation of spring constant k

operated through gravity, he reasoned that controlling the balance wheel with a spring would have huge advantages for a portable timekeeper that one might carry around or one which would have to continue to keep the correct time on a ship.

2. ## The purpose of this experiment was to find the normal force and the lift ...

But in those points the angle of attack 11 and 16 showed two different characteristics. The lift on the wing is usually due to the pressure difference between the upper surface and lower surface of the wing. As the angle of attack (?)

1. ## The aim of this experiment was to set up, calibrate and use a model ...

significance level we can justifying say that the results I obtained where significant. With Lens B the results are also significant with probability being 1.297 which Is less than 2.5% therefore can reject the null hypothesis at 5% level. Discussion The relationship this experiment was based upon was Newton's equation from which the focimeter equation was derived.

2. ## Projectile Motion

There have even been recorded instances of beehives being catapulted over castle walls. The last large-scale military use of catapults was during the trench warfare of World War I. During the early stages of the war, catapults were used to throw hand grenades across no man's land into enemy trenches.

1. ## Measurement of gravity using a rigid pendulum

For equation 1 to work, we needed to use an amplitude of less than �20mm to ensure that the error in the approximation of equation 1 was not greater than 1 part in 1000. The measurements for T were taken using a handheld stopwatch using a fixed reference point below the pendulum to time its oscillations as it passed this.

2. ## SELECTED PROBLEMS OF MODERN PHYSICS I. THE PHOTOELECTRIC EFFECT

If an electron is accelerated by the potential difference V and loses its total energy in a single collision, its kinetic energy should be equal to the energy of X-ray photon generated. Thus, and 13. How do you explain the mechanism of characteristic X-ray generation ?

1. ## Acceleretion due to gravity

The difference of the value of the acceleration due to gravity obtained from this experiment to the accepted value could be due to a number of reasons. One of the major reasons for this difference in values could be due to sideways movement of the pendulum.

2. ## Medical Physics

As there are high-impact collisions involved in X-ray production a lot of heat is generated, so a motor rotates the anode to keep it from melting as the electron beam is not always focused on the same area. A thick lead shield to keep the X-rays from escaping in all directions surrounds the entire mechanism.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to