Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8

Torque Physics Lab Report. The purpose of this experiment was to help understand torque by not only measuring it but also by manipulating and adjusting the weights experimentally.

Do not show me this again

Are you in the right place?

Jump to Physics and see how teachers think you should prepare in:

Extracts from this document...

Introduction

Experiment 7: Torque Physics 1100-ETR6B: Professor Viraht Sahni 10/18/2011 Emily Callejo and Max Vlasyuk Objective The purpose of this experiment was to help understand torque by not only measuring it but also by manipulating and adjusting the weights experimentally. Procedure In order to perform all the procedures a few instruments were required a meter stick, a triple beam balance, suspension clamps and their stirrups, a knife edge, as well as weights of 50 and 100 grams and a spring scale. The meter stick was weighed (without the clamp), and its center of gravity was found (it's not usually exactly at 50cm), the 6 clamps were weighed as well. For the first part the meter stick was put on 35cm and a 100g weight was adjusted until the center of balance was found, the position was recorded, this was than done with 150g and 50g. Once the values were recorded the weight of the bar was calculated and the average was found. For the next part of the experiment three weights were attached anywhere on the bar, the center one was adjusted till there was equilibrium and than the force was measured with a spring scale. ...read more.

Middle

Position (cm) Force (N) = m*g Force Down F1 0.100 25.0 0.980 F2 0.100 44.0 0.980 F3 0.171 48.5 1.68 F4 0.050 58 0.490 F5 0.050 78 0.490 Force Up (spring) F6 0.300 90 -2.94 Table 5: Torque Table Direction of Torque Force # Force (N) = m*g Position on meter stick (cm) r= position from axis of rotation (m) (N*m) + F1 0.980 25.0 0.15 0.147 + F2 0.980 44.0 0.34 0.333 + F3 1.68 48.5 0.385 0.646 + F4 0.490 58.0 0.48 0.235 + F5 0.490 78.0 0.68 0.333 - F6 -2.94 90.0 0.80 -1.96 Questions: The motion of the rigid system will move up in the counter clockwise direction if the condition for equilibrium is not satisfied in which the spring has greater force. The opposite will happen if the meter bar and weights have a greater force than the spring. The same goes for the Torque. If the second condition for equilibrium is not satisfied and there is greater torque of the spring, the system will move in the counter clockwise motion and will move clockwise if the Torque is greater for the meter bar. ...read more.

Conclusion

This percent error is low enough to be negligible and to confirm the equation used for Part II. In Part III and IV, the forces acting on the meter stick are in the vertical direction. Since the meter stick was level, the angle was 180 degrees meaning the force acted on the axis on either side of the center of balance. The experiment should have observed that the net force and net torque acting on the meter stick is equaled to zero. However, experimental results show that the net force is not zero. The net torque is not zero as well. However, the net torque value approaches zero more than the experimental values do. Therefore, the torque equation may be confirmed in this experiment, but the force equation cannot because the values are too far from zero. This may be because the presence of error in this lab is high. Errors occurred in this lab are due to inaccurate measurements of position. It was difficult to keep the meter bar steady to find where the stick is level. Also, there may have been something wrong with the balance and springs because they are very old, rusted equipment and may not work as accurately as they did when they were new. Overall, we were able to understand the concept of torque, even if there were errors in our experiment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our University Degree Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related University Degree Physics essays

  1. Hooke's law lab report. Hookes law and the investigation of spring constant k

    operated through gravity, he reasoned that controlling the balance wheel with a spring would have huge advantages for a portable timekeeper that one might carry around or one which would have to continue to keep the correct time on a ship.

  2. Projectile Motion

    There have even been recorded instances of beehives being catapulted over castle walls. The last large-scale military use of catapults was during the trench warfare of World War I. During the early stages of the war, catapults were used to throw hand grenades across no man's land into enemy trenches.

  1. Medical Physics

    They are often used in conjunction with a fluoroscope. The fluoroscope allows x-rays to pass through the body onto a fluorescent screen creating a moving X-ray image. Doctors can use fluoroscopy to trace the passage of contrast media through the body.

  2. How a standard Television works and what understanding of Physics was needed to develop ...

    C, represents an anode, responsible for directing and accelerating the electrons. There can be up to 6 of these in a television. The rear of the screen is coated in small phosphor dots which the electron beams are aimed towards creating colour on the front of the screen.

  1. Free essay

    Measurement of gravity using a rigid pendulum

    The moment of inertia can be found by measuring the torsional oscillations of the pendulum, suspended by its centre of mass, compared to the torsional oscillations of a bar of known moment of inertia; with the axis's through the centre of mass of the pendulum and bar parallel to each other.

  2. The three different crystallographic planes shown are for a unit cell of a hypothetical ...

    edge lengths of the unit cells of lithium and aluminum into the above formula, we can obtain the volumes of the unit cells of lithium and aluminum: with significant figures applied with significant figures applied where (Volume/unit_cell) Lithium is the volume of a unit cell of lithium and (Volume/unit_cell)

  1. Methods Of Particle Size Analysis

    The grade efficiency is effectively probabilistic in nature. The finite widths of inlet and outlets and the consequent range of particle trajectories within the separator only provide a chance of a particular particle following a particular trajectory. However, averaged over many particles (of identical size)

  2. The purpose of this essay is to demonstrate how disregarding the philosophical approach at ...

    a name Z or a nomination (from the Latin, nomination=name), we denote it conditionally by equalities nomA = Z and nomEA = EZ (it is intended to be read "a nomination of the unit EA of the physical quantity A is EZ"); 2)

  • Over 180,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.

Do not show me this again

Are you in the right place?

Jump to Physics and see how teachers think you should prepare in: