Humans and the Environment.

Authors Avatar

Humans and the environment

Humans and the Environment

1 - Air Pollution:

A) This is the contamination of the atmosphere by gaseous, liquid, or solid wastes or by-products that can endanger human health and the health and welfare of plants and animals, or can attack materials, reduce visibility, or produce undesirable odours. Among air pollutants emitted by natural sources, only the radioactive gas radon is recognised as a major health threat. A by-product of the radioactive decay of uranium minerals in certain kinds of rock, radon seeps into the basements of homes built on these rocks, posing a risk of lung cancer to residents.

Each year industrially developed countries generate billions of tons of pollutants. The most prevalent and widely dispersed air pollutants are described in the accompanying table. The level is usually given in terms of atmospheric concentrations (micrograms of pollutants per cubic metre of air) or, for gases, in terms of parts per million, that is, number of pollutant molecules per million air molecules. Many come from directly identifiable sources; sulphur dioxide, for example, comes from electric power plants burning coal or oil. Others are formed through the action of sunlight on previously emitted reactive materials (called precursors). For example, ozone, a dangerous pollutant in smog, is produced by the interaction of hydrocarbons and nitrogen oxides under the influence of sunlight. Ozone has also caused serious crop damage. On the other hand, the discovery in the 1980s that air pollutants such as fluorocarbons are causing a loss of ozone from the earth's protective ozone layer has caused the phasing out of these materials.

Meteorology and Health Effects

Pollutant concentration is reduced by atmospheric mixing, which depends on such weather conditions as temperature, wind speed, and the movement of high and low pressure systems and their interaction with the local topography, for example, mountains and valleys. Normally, temperature decreases with altitude. But when a colder layer of air settles under a warm layer, producing a temperature or thermal inversion, atmospheric mixing is retarded and pollutants may accumulate near the ground. Inversions can become sustained under a stationary high-pressure system coupled with low wind speeds.

Periods of only three days of poor atmospheric mixing can lead to high concentrations of hazardous materials in high-pollution areas and, under severe conditions, can result in injury and even death. An inversion over Donora, Pennsylvania, in 1948 caused respiratory illness in over 6,000 people and led to the death of 20. Severe pollution in London took 3,500 to 4,000 lives in 1952 and another 700 in 1962. Release of methyl isocyanate into the air during a temperature inversion caused the disaster at Bhopal, India, in December 1984, with at least 3,300 deaths and more than 20,000 illnesses. The effects of long-term exposure to low concentrations are not well defined; however, those most at risk are the very young, the elderly, smokers, workers whose jobs expose them to toxic materials, and people with heart or lung disease. Other adverse effects of air pollution are potential injury to livestock and crops.

Often, the first noticeable effects of pollution are aesthetic and may not necessarily be dangerous. These include visibility reduction due to tiny particles suspended in air, or bad odours, such as the rotten egg smell produced by hydrogen sulphide emanating from pulp and paper mills.

Sources and Control

The combustion of coal, oil, and petrol accounts for much of the airborne pollutants. More than 80 per cent of the sulphur dioxide, 50 per cent of the nitrogen oxides, and 30 to 40 per cent of the particulate matter emitted to the atmosphere in the United States are produced by fossil-fuel-fired electric power plants, industrial boilers, and residential furnaces. Eighty per cent of the carbon monoxide and 40 per cent of the nitrogen oxides and hydrocarbons come from burning petrol and diesel in cars and lorries. Other major pollution sources include iron and steel mills; zinc, lead, and copper smelters; municipal incinerators; oil refineries; cement plants; and nitric and sulphuric acid plants.

Join now!

Potential pollutants may exist in the materials entering a chemical or combustion process (such as lead in petrol), or they may be produced as a result of the process itself. Carbon monoxide, for example, is a typical product of internal-combustion engines. Methods for controlling air pollution include removing the hazardous material before it is used, removing the pollutant after it is formed, or altering the process so that the pollutant is not formed or occurs only at very low levels. Car exhaust pollutants can be controlled by burning the fuel as completely as possible, by recirculating fumes from fuel tank, ...

This is a preview of the whole essay