• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

Examining, analysing and comparing three different ways in which to find the roots to an equation.

Extracts from this document...


Advanced Mathematics (C3) Coursework Introduction: For my investigation, I will be examining, analysing and comparing three different ways in which to find the roots to an equation. It will include the "Change of Sign Method", the "Newton-Raphson Method" and finally the method of rearranging "f(x) = 0" into the form "x = g(x)". I will be finding roots of equations using the methods, and hence compare the merits and flaws of the methods with each other. I will analyse which is the best in terms of factors such as a speed of convergence and ease of use with available software and hardware. Change of Sign Method: This method finds a root to an equation by looking at when values of f(x) change sign from positive to negative or vice versa. This works because when the value of f(x) changes its sign, it must have passed through the x axis, and thus the root is somewhere between the two values that changed. The technique of the method can be done in many ways such as by interval bisection or linear interpolation. However, I will be using the decimal search method. With decimal search, you first draw the graph of the curve that is to be investigated, and look for where the curve passes through the x axis, as these points are where the roots are. But as you cannot guess exactly where the roots are, you take intervals: the two points surrounding where the curve passes through the x axis. These points are taken as whole numbers. The next step is then to investigate where exactly between this interval, the value of f(x) changes to positive, or negative. To do this you go one decimal point further between these values. For example if the root was between 3 and 4, you would now investigate every 0.1 value, such as 3.1, 3.2, 3.3 and so on. ...read more.


These were the results: x1 0.281250000000 x2 0.255561828613 x3 0.254172803842 x4 0.254105133149 x5 0.254101855184 x6 0.254101696443 x7 0.254101688756 x8 0.254101688384 x9 0.254101688366 x10 0.254101688365 x11 0.254101688365 As shown, the values converge to a single point, 0.254101688365, which is the root to the degree of accuracy of 12 decimal places. The convergence of these values is shown on the graph on the following page, which illustrates each of the approximations that were taken, showing how they got closer and closer to the root, and finally reached it: The magnitude of g`(x) could be calculated by first finding g`(x) of the equation which was done by differentiation: g`(x) = 3x/4 So with a starting point of 1, the gradient of the line at that point would be: (3 x 1)/4 = 0.75 As the value was less than 1, but still higher than -1, the iteration converged towards the root, and didn't diverge. Failure of Rearranging Method: This method can fail when the gradient, g`(x), of "a" is above 1 or less than -1, as then the iteration does not converge towards the root, and instead diverges away from it. This can be shown in the example below. By taking the same equation, I rearranged it in a different way, giving the resulting equation: x = x� - 3x + 1 I then drew the graph to see where the roots were: I then chose to try and investigate one of the roots. I picked the root at the interval, [1, 2] and chose the starting value of 2. The results of the iteration were as follows: x1 2.0000000000 x2 3.097656250000 x3 7.680870190263 x4 113.534706794433 x5 365869.522500695000 x6 12243869989713700.000000000000 As the results showed, the iteration was not converging towards a root, but instead was diverging, and eventually the program failed as it was "overflowing". This happened as the gradient of "a" was larger than 1, and thus the iteration will not converge towards the root. ...read more.


Comparison of Speed of Convergence: The speed of convergence for the Newton-Raphson was much faster than that of the Rearranging Method. This is because by finding the tangent to the curve each time, it is getting closer to the root of the equation faster, rather than finding the points of intersection between the curve y = g(x) and y =x, as that takes more iterations in order to reach the root. For the equation, it took the Newton-Raphson method only 5 steps to reach the answer, whereas it took the Rearranging Method 11 steps, thus over twice as slow. However, both of these methods are faster than that of the Change of Sign method, as for that you must examine a huge amount of values of x in order to find where the sign changes, and it takes a very long time to find the root to the same amount of accuracy as the rest. The actual number of calculations needed was 132, compared to that of 5 and 11 steps for the other methods, makes it a very tedious method. Comparison of Ease of Use with Available Software and Hardware: The Rearranging Method and Newton-Raphson Method are relatively similar in their demands for software and hardware, as they both require a machine and software that is able to plot graphs, so that the roots can be spotted and fixed point estimations can be made. The Change of Sign Method however, does not require this as it can simply see when the sign changes and thus discover the roots. The iterations of the Newton Raphson Method and Rearranging Method can be calculated via easy formulas in a spreadsheet program such as Excel, though they require no more hardware or software than that of the Change of Sign method, which also uses simple spreadsheet formulas to calculate the value of f(x). However, the Change of Sign method does require more hard disk space as the calculations can be very large at times in comparison with the other methods. Daniel Hoij 13.6 DCGS Centre No. 52205 Candidate No. 8670 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    -32.016002 -16.004 3 -18 3.1 -19.22 -12.4 3 -18 3.01 -18.1202 -12.04 3 -18 3.001 -18.012002 -12.004 2 -8 2.1 -8.82 -8.4 2 -8 2.01 -8.0802 -8.04 2 -8 2.001 -8.008002 -8.004 1 -2 1.1 -2.42 -4.4 1 -2 1.01 -2.0402 -4.04 1 -2 1.001 -2.004002 -4.004 x x2 -2x�

  2. In my coursework I will be using three equations to investigate their solutions using ...

    The Newton-Raphson Method f(x)=0 is solved using the iteration I am using the function f(x)=x�+6x�+4x for this method I first plotted the graph of y= x�+6x�+4x to find any roots and this is what I got: f(x)= x�+6x�+4x f'(x)= 3x�+12x+4 Using excel I have found the roots By using the

  1. Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

    0.699419 -0.6666 8 0.699419 0.681886 -0.66506 9 0.681886 0.693559 -0.66632 10 0.693559 0.685785 -0.66558 11 0.685785 0.690961 -0.66612 12 0.690961 0.687514 -0.66578 13 0.687514 0.689810 -0.66601 14 0.689810 0.688281 -0.66586 15 0.688281 0.689299 -0.66597 16 0.689299 0.688621 -0.6659 17 0.688621 0.689073 -0.66594 18 0.689073 0.688772 -0.66591 , Let us focus on the speed of converges at the first place.

  2. Numerical solution of equations, Interval bisection---change of sign methods, Fixed point iteration ---the Newton-Raphson ...

    -9.585E-05 6.10352E-05 15 1.212891 0.000166729 1.212952 -9.5853E-05 1.213 3.5436E-05 3.05176E-05 16 1.212921 3.54359E-05 1.212952 -9.5853E-05 1.213 -3.021E-05 1.52588E-05 17 1.212921 3.54359E-05 1.212936 -3.0209E-05 1.213 2.6133E-06 7.62939E-06 18 1.212929 2.61329E-06 1.212936 -3.0209E-05 1.213 -1.38E-05 3.8147E-06 19 1.212929 2.61329E-06 1.212933 -1.3797E-05 1.213 -5.592E-06 1.90735E-06 20 1.212929 2.61329E-06 1.212931 -5.5923E-06 1.213 -1.49E-06 9.53674E-07

  1. I am going to solve equations by using three different numerical methods in this ...

    We have to continue this method until the root is found to more than 5 decimal places. To be safe, it is necessary to evaluate f(x) at both these points and show that one value is positive and the other is negative (sign change).

  2. Different methods of solving equations compared. From the Excel tables of each method, we ...

    In this case we might consider a starting point of x=1. Excel can help us with the process of getting the approximate value of the root. x g(x) g'(x) 1.00000000 0.50000000 1.00000000 0.50000000 0.37500000 -0.25000000 0.37500000 0.41210938 -0.32812500 0.41210938 0.40015610 -0.31471634 0.40015610 0.40395005 -0.31993749 0.40395005 0.40273917 -0.31837317 0.40273917 0.40312499 -0.31888182

  1. The method I am going to use to solve x−3x-1=0 is the Change ...

    Therefore, the maximum error is 0.000000005 However, sometimes the Newton-Raphson method would not work, and examples are shown below: Example I want to solve the equation of x�+3x�-1=0 and find the first negative root of that which graph is shown below: The f '(x)

  2. Functions. Mappings transform one set of numbers into another set of numbers. We could ...

    have to factorise first ==> If we have fractions in the numerator or denominator, multiply to remove the fraction Multiplying and Dividing ==> Multiply the numerators and multiply the denominators. ==> Cancel where necessary ==> Where one fraction is divided by another, invert/flip the second fraction and multiply.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work