• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8

# Numerical Methods coursework

Extracts from this document...

Introduction

Numerical Methods Coursework

Numerical Integration

The Problem

Integration means finding the area underneath a particular region of a function. At my current knowledge of maths I am not able to integrate various functions. Therefore I am going to use knowledge of numerical methods to produce an approximation to an area which does not have an analytic solution.

In my coursework I will integrate the function:

The graph below shows the graph of the function.

The red arrow determines the region between 0.25 and 1.25, which then leads to the integral:

I can not solve this problem using the knowledge of C1 and C2, because I am not able to integrate cos(x) yet. Due to this I suggest that this problem will be appropriate for numerical solution.

The Approximation Rules

To solve this problem, I am going to use knowledge of numerical integration studied in the “Numerical Methods” textbook. The approximate methods of definite integrals may be determined by numerical integration using:

1. The Trapezium Rule:

The Trapezium Rule divides the area underneath the curve into trapeziums. We can then use the formula  (where a, b are the bases and h is the height of the trapezium) to estimate the area.

Middle

Error Analysis

Because all three rules are just estimates, there is always an error involved. In this section I will give an estimate of how much error there is in my solution of the problem.

Firstly I want to refer to my graph of my function on page 1. The section of the curve is concave that means that the Trapezium Rule gives an overestimate and the Midpoint Rule gives an underestimate. For that reason the estimates of the Trapezium Rule are decreasing and they will reach the solution from above. On the other side the Midpoint Rule estimates are increasing and they will reach the solution from below.

Error in the Trapezium Rule

In the Trapezium Rule the error is proportional to h2. We add a constant k so that:

In general, if  is the absolute error in  then there is a constant (k) so that:

Where h is the strip width corresponding to n strips.

So the Trapezium Rule with 2n strips has a strip width of , such that:

That shows that halving h or doubling n will reduce the error by a factor of 0.25.

Therefore the “error multiplier” is 0.25.

Conclusion

This can be proved by looking on the diagram below.

The distance between  and  is 4 times smaller than the distance between  and , where X represents the actual solution. To get the next distance between  and  we multiply the “multiplier” 0.25 with the distance between  and .

This development leads to improved solution by extrapolation, as stated in the “Formula Application” section.

Error in my solution

The error gets smaller the more strips are used as shown above. Therefore:

 Rule Error T2, M2 T4, M4 T8, M8 … … T4096, M4096 --- --- S2 S4 … … S256

Interpretation

My solution to the integral  is: 0.885909(6 decimal places)

The solution refers to:        T4096=        0.885909120684554

M4096=        0.885909049759261

S256=        0.885909075135303

The fact that the Trapezium Rule and the Midpoint Rule give the same solution till the sixth decimal place guaranties that my solution is valid. Simpson’s Rule, the weighted average, proves the solution as well.

Therefore: My solution is proved by 3 different rules.

I can say with guarantee that there is an error involved, because all three rules are just approximation rules. But I can say that my solution is not far away from the actual solution as the error for the rules with 4096 stripes is very small (actual value stated in the “Error Analysis” section).

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Core & Pure Mathematics essays

1. ## MEI numerical Methods

of excel; I should be able to produce a formula on excel for the secant method thus making this method suitable for this equation. False position method: The false position method is similar to the secant method in the sense that it uses a straight line to approximate the function of the area of interest.

2. ## Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

1 3.000000 5.500000 7.5 2 5.500000 53.937500 34.375 3 53.937500 75550.687378 4256.006 4 75550.687378 ############ After 4 iteration the sequence is clearly to diverge to infinity because numbers is getting very large. On the 4th sequence g (xn) is so large that even computer grid cannot show the value

1. ## Numerical integration can be described as set of algorithms for calculating the numerical value ...

The trapezium rule makes use of trapeziums instead of rectangles. Like the mid-point rule it is easier to describe by using a diagram: Figure 1.1 shows 4 trapezia, each one of length one (h), approximating the area under the curve, between 1 and 5.

2. ## C3 Coursework: Numerical Methods

This is illustrated by the graph below. This graph shows the equation of the line y=x�+10x�+4.8x+0.576 The roots appear to be between -1 and 0. By taking increments of 0.1 between -1 and 0 it will be possible to use decimal search to attempt to look for a change in sign.

1. ## Functions Coursework - A2 Maths

x f(x) 1.8790 -0.002926 1.8791 -0.002166 1.8792 -0.001407 1.8793 -0.000647 1.8794 0.0001121 1.8795 0.0008718 1.8796 0.0016316 1.8797 0.0023915 1.8798 0.0031516 1.8799 0.0039117 1.8800 0.0046720 The root therefore lies in the interval [1.8793,1.8794]. The next table show values of f(x) at values of x from 1.8793 to 1.8794, with intervals of 0.00001.

2. ## Solving Equations Using Numerical Methods

in each case to make sure that a change of sign occurs. F(x) = y=x�-2x+0.5 F(-1.526) = -0.00156 F(-1.525) = 0.00342 As a change of sign has been found and confirmed here, this is where the root lies. The root is -1.5255 � 0.0005 I have successfully found one of

1. ## Numerical integration coursework

make an approximation from Mâ up to Mââ, these algorithms made it much easier and quicker to come to a final answer thanks to the ability to just simply pull down the box with the algorithm in to transfer it to other boxes.

2. ## C3 COURSEWORK - comparing methods of solving functions

0.9 8 0.7 -1.187 9 0.8 -0.568 10 0.81 -0.50026 11 0.82 -0.43143 12 0.83 -0.36151 13 0.84 -0.2905 14 0.85 -0.21838 The root lies between 0.87 and 0.88 15 0.86 -0.14514 16 0.87 -0.0708 17 0.871 -0.0633 18 0.872 -0.05579 19 0.873 -0.04827 20 0.874 -0.04074 21 0.875 -0.0332

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to