Can heart disease be prevented?

Can heart disease be prevented? Preventing heart disease. Something our doctors tell us about all the time, something we all want to do, but what exactly is a "heart disease". How can we prevent it if we don't even know what it is? Every one has heard the terms "heart attack" and "stroke" but hardly anyone knows what they mean. Let's start right at the beginning. A heart disease, medically known as cardiovascular disease, is a disease of the heart and the blood vessels. Most people think only the middle aged and elderly get such diseases but no, cardiovascular diseases can be found in children as young as the age of seven years old. This is strongly liked with the children's lack of exercise and a poor diet. There are many types of cardiovascular diseases of which the major ones are atherosclerosis, coronary, rheumatic, congenital, myocarditis, angina and arrhythmia. Heart disease can arise from congenital defects, infection, narrowing of the coronary arteries, high blood pressure, or disturbances. (1) Atherosclerosis is the thickening of the inner layer of the arterial walls due to the deposit of cholesterol, fibrous tissue, dead muscle cells and blood platelets. This deposit is also known as atheromatous plague or an atheroma. Rheumatic heart disease used to be one of the most serious heart diseases in both children and adolescence as it involves damage to the entire

  • Ranking:
  • Word count: 1386
  • Level: AS and A Level
  • Subject: Science
Access this essay

Investigate the water potential of celeriac.

Aim Investigate the water potential of celeriac. Apparatus Celeriac - this is the specimen that we will be finding the water potential of. .00 mol dm-3 sucrose solution - this will be placed in the test tube in which the experiment will take place. We will dilute the solution to produce a range of concentrations. 0.0ml Graduated Pipettes (x2) - I had a choice of 5.0ml, 10.0ml and 20.0ml graduated pipettes. I chose this size pipette because it is time efficient and accurate at the same time. It is an accurate piece of equipment because as opposed to standard pipettes, this graduated pipette has 0.1ml graduations to ensure the utmost accuracy. One pipette will be used for water and one will be used for sucrose solution. 250ml Beakers (x2) - these will be used to hold water and the 1.00 mol dm-3 sucrose solution in a safe environment. Cork Borer - this will be used to cut the precise shape of the celeriac. This will also ensure that the surface area to volume ratio is constant throughout the experiment. Razor - this will be used to cut the pieces of celeriac to a precise length. Ruler - this will be used to measure the length of celeriac that will be used in the experiment. Scales - they will be used to measure the mass of celeriac before and after the experiment with accuracy. Therefore, the mass increase/decrease can be calculated after the experiment. These scales

  • Ranking:
  • Word count: 5310
  • Level: AS and A Level
  • Subject: Science
Access this essay

Describe the molecular structure of starch (amylase), glycogen and cellulose, and relate these structures to their functions in living organisms.

Describe the molecular structure of starch (amylase), glycogen and cellulose, and relate these structures to their functions in living organisms. Carbohydrates are the main energy source for the human body. Chemically, carbohydrates are organic molecules in which carbon, hydrogen and oxygen bond together in the ratio: Cx(H2O)y where x and y are whole numbers that differ depending on the specific carbohydrate to which we are referring. Animals (including humans) break down carbohydrates during the process of metabolism to release energy. For example, the chemical metabolism of the sugar glucose is shown below: C6H12O6 + 6 O2 6 CO2 + 6 H2O + energy Animals obtain carbohydrates by eating foods that contain them, for example potatoes, rice, breads, etc. These carbohydrates are manufactured by plants during the process of photosynthesis. Plants harvest energy from sunlight to run the reaction described above in reverse: 6 CO2 + 6 H2O + energy (from sunlight) C6H12O6 + 6 O2 A potato, for example, is primarily a chemical storage system containing glucose molecules manufactured during photosynthesis. In a potato, however, those glucose molecules are bound together in a long chain. As it turns out, there are two types of carbohydrates, the simple sugars and those carbohydrates that are made of long chains of sugars - the complex carbohydrates. In this essay I am going to

  • Ranking:
  • Word count: 3400
  • Level: AS and A Level
  • Subject: Science
Access this essay

The comparison of antibacterial properties of herbal products and standard antibiotics

The comparison of antibacterial properties of herbal products and standard antibiotics Introduction: This is As biology coursework, studying the area of microbiology the main investigation contains the comparison of antibacterial properties of herbal products and standard antibiotics. Aim: The aim is to investigate the effect of herbal products against standard antibiotics on bacteria growth. To examine the extent to which the herbal products (tea tree oil and peppermint oil) and the standard antibiotics (penicillin and streptomycin), reduce bacteria growth of E.coli and M.luteus. This will be discovered by measuring the growth of bacteria on the agar plates and comparing the results. Background information: The proposed aim surrounds the study of bacteria growth and various other products, which can have an affect on the growth rate; it is therefore necessary to look deeper into the topic criteria to get a wider understanding and to help design an appropriate hypothesis. From self-knowledge antibiotics are chemicals produced by microorganisms, which are designed to inhibit and destroy specific pathogens when used at low temperatures. Antibiotics release chemicals, which inhibit bacterial growth and work on a specific action site. The first founded antibiotic was penicillin discovered accidentally by Alexander Fleming in 1928 from a mold culture. It can be

  • Ranking:
  • Word count: 6864
  • Level: AS and A Level
  • Subject: Science
Access this essay

Investigation of the effect of different carbohydrate substrates on yeast growth

"Investigation of the effect of different carbohydrate substrates on yeast growth" Yeasts are eukaryotic microorganisms classified in the kingdom Fungi. The cell walls made of Chitin and they can be found virtually everywhere; "on the skin, on some fruits, in the soil and some are airborne" Saccharomyces cerevisiae are the species of yeast to be used in this experiment. They are used in industry due to the secretion of enzymes that they produce which breaks down sugars by two means aerobically or anaerobic. Aerobically (sugar + Oxygen --> Carbon dioxide + Water + 38 ATP energy) and anaerobically (sugar --> Ethanol + Carbon dioxide + 2 ATP) as this experimental investigation is about the growth of yeast, the main equation is the aerobic one due to it provides 38 ATP energy for cell division either by means of mitotic growth (asexual/ budding) which is the more common type of growth or by means of meiosis (sexual reproduction). The energy is necessary for the oxidising the sugar (C6H12O6/ glucose) into pyruvate, glycolysis happens in the cytoplasm. I will experiment three different sugars; glucose a monosaccharide; maltose a disaccharide and sucrose Alternative hypothesis Glucose will have the largest effect on yeast growth. Maltose will have a slight effect on yeast growth. Sucrose will have the least effect on the yeast growth. Null hypothesis (necessary for

  • Ranking:
  • Word count: 1512
  • Level: AS and A Level
  • Subject: Science
Access this essay

An Investigation into the Water Potential Of Root Vegetables.

An Investigation into the Water Potential Of Root Vegetables. The aim of this investigation is to find the water potential of two root vegetables and to evaluate any differences that are found. Root vegetables take in the water they need through a process known as osmosis. Water moves from an area of high water potential to an area of low water potential through a partially permeable membrane. The water potential of root vegetables depends on the concentration of solutes within their cells. Starch is not soluble so the starch content of the vegetables will not affect the water potential. Sucrose however is soluble. In the investigation I will find the isotonic solution for each vegetable based on the principle that when the vegetable is in a hypertonic solution it will lose water (and become plasmolysed) and therefore lose mass and that when the vegetable is in a hypotonic solution it will gain water (and become turgid) and gain mass. By calculating the percentage change in each vegetable piece I will be able to find the concentration of sucrose solution at which the vegetable will gain no mass. Once the isotonic solution is found for each vegetable, its water potential can be found by using a reference graph, which shows the water potential for different concentrations of sucrose. The two vegetables I will use will be a potato and a swede. Swedes are considered a sweet

  • Ranking:
  • Word count: 2161
  • Level: AS and A Level
  • Subject: Science
Access this essay

Biology Coursework - Osmosis - To Investigate concentration of sucrose solution is isotonic to potato cell sap.

Biology Coursework - Osmosis Planning Aim: To investigate what concentration of sucrose solution is isotonic to potato cell sap. Apparatus: 0M sucrose (aq) (distilled water) 2M sucrose (aq) Potato Chip cutter Knife Boiling tubes Measuring cylinder (25cm3) Vernier callipers (to nearest 0.1mm) Balance (to nearest 0.01gram) Safety: I will ensure safety around the lab by: wearing safety goggles, laying paper towels, removing baggage from walking space, push stools under the bench, stand up, walk carefully and slowly - don't rush and handle equipment and apparatus carefully. Preliminary Experiment: I did a small experiment before doing the real one so I could find a suitable range to base my investigation round. I used 3 chips in 3 boiling tubes, each containing 20cm3 of: 0M sucrose, 0.5M sucrose and 1M sucrose. Moles of Sucrose /M Original Mass /g Mass after 3 hours /g Up/Down in mass 0M 8.02 9.94 Up 0.5M 8.18 7.83 Down M 8.83 7.20 Down As you can see from my preliminary results, I should investigate between 0M sucrose and 0.5M sucrose as a suitable range. I predicted that the isotonic concentration lies between 0.35M and 0.4M. Method: I will cut 5 chips with no skin on them and have them approximately the same length, width, breadth and mass (using the balance and Vernier callipers for extra accuracy), then I will dry off the sap completely. I will

  • Ranking:
  • Word count: 878
  • Level: AS and A Level
  • Subject: Science
Access this essay

Investigate a factor which can affect the process of osmosis in a living plant tissue

Meetal Odedra 11V Biology coursework Investigate a factor which can affect the process of osmosis in a living plant tissue Planning For this coursework investigation I will be investigating factors that affect the process of osmosis in a living plant cell, but mainly focusing on one factor I have chosen. In order to do so, I have conducted some background research on osmosis to help me understand the investigation in hand. Background Scientific Research (Using D.G. Mackean's GCSE Biology textbook) Osmosis is defined as the movement of water molecules from a high concentration of water (potential) to a lower concentration of water (potential) down a concentration gradient, through a partially permeable membrane. When a substance such as sugar dissolves in water, it reduces the concentration of the water molecules because the sugar molecules attract some of the water molecules and stop them moving freely. Osmosis can be explained with the help of the diagram below: The diagram shows that the sugar molecules on the right have attracted half of the water molecules. There are now more free water molecules on the left than on the right so water molecules will diffuse more rapidly from left to right across the partially permeable membrane, than from right to left. This is because the net movement of the water molecules move from the high concentration of water

  • Ranking:
  • Word count: 2618
  • Level: AS and A Level
  • Subject: Science
Access this essay

Mr Chips: Investigation to find an isotonic solution for potatoes

Mr Chips: Investigation to find an isotonic solution for potatoes Introduction Investigation aimed to find out the amount of grams of salt solute needed to create an isotonic solution to prevent osmosis in fresh cut potato chips. Osmosis is the movement of water molecules through a selectively-permeable membrane down a water potential gradient. More specifically, it is the movement of water across a selectively permeable membrane from an area of high water potential (low solute concentration) to an area of low water potential (high solute concentration). The water molecules will continue to move through the semi-permeable membrane until both sides have reached a state of equilibrium. Isotonic solution is a solution in which its solute concentration is the same as the solute concentration of another solution with which it is compared In plant cells when water moves into the vacuole it increases in size and pushes the cell membrane against the cell wall, this causes the cellulose cell wall to stretch slightly and when it can stretch no further it becomes taut and firm. The pressure inside the cell rises and eventually the internal pressure of the cell is so high that no more water can enter the cell. This liquid or hydrostatic pressure works against osmosis. At this point the cell wall prevents the cell from bursting and is said to be fully turgid. Turgidity is very

  • Ranking:
  • Word count: 2458
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Importance and Biological Functions of Carbohydrates.

The Importance and Biological Functions of Carbohydrates. Carbohydrates have many functions. This essay will look at some of them and also what carbohydrates are constructed of. A Carbohydrate molecule contains Carbon, Hydrogen and Oxygen. There are twice as many Hydrogens as there are Oxygens, the same proportion as water. Carbohydrates have the general formula of C (H O) Carbohydrates can be divided into three main types. These are monosaccharides (single sugar units), disaccharides (two sugar units) and polysaccharides (many sugar units). Different monosaccharides contain different numbers of carbon atoms. Trioses contain three, pentoses contain five and hexoses six. Carbohydrates have many different functions and come in many different forms. Ribose and Deoxyribose are both pentose monosaccharides and are found in RNA and DNA. Glucose and Fructose are both hexose monosaccharides. Glucose is an important source of energy in respiration and Fructose is found in fruits. Sucrose is a disaccharide formed from Glucose and fructose. It is the form in which carbohydrates are transported in plants. Maltose is a disaccharide of glucose and is formed from the digestion of starch. The carbohydrate in milk is lactose and it is formed from Glucose and galactose. Important polysaccharides include Starch, Glycogen and Cellulose. They are all made up from Glucose but have different

  • Ranking:
  • Word count: 1253
  • Level: AS and A Level
  • Subject: Science
Access this essay