The Importance and Biological Functions of Carbohydrates.

The Importance and Biological Functions of Carbohydrates. Carbohydrates have many functions. This essay will look at some of them and also what carbohydrates are constructed of. A Carbohydrate molecule contains Carbon, Hydrogen and Oxygen. There are twice as many Hydrogens as there are Oxygens, the same proportion as water. Carbohydrates have the general formula of C (H O) Carbohydrates can be divided into three main types. These are monosaccharides (single sugar units), disaccharides (two sugar units) and polysaccharides (many sugar units). Different monosaccharides contain different numbers of carbon atoms. Trioses contain three, pentoses contain five and hexoses six. Carbohydrates have many different functions and come in many different forms. Ribose and Deoxyribose are both pentose monosaccharides and are found in RNA and DNA. Glucose and Fructose are both hexose monosaccharides. Glucose is an important source of energy in respiration and Fructose is found in fruits. Sucrose is a disaccharide formed from Glucose and fructose. It is the form in which carbohydrates are transported in plants. Maltose is a disaccharide of glucose and is formed from the digestion of starch. The carbohydrate in milk is lactose and it is formed from Glucose and galactose. Important polysaccharides include Starch, Glycogen and Cellulose. They are all made up from Glucose but have different

  • Ranking:
  • Word count: 1253
  • Level: AS and A Level
  • Subject: Science
Access this essay

Following the Progress of an Enzyme Controlled Reaction

Following the Progress of an Enzyme Controlled Reaction Plan Enzymes are a widely used source of biological catalyst; they are used in widely in industry as in the biological aspects. Enzymes are biological catalyst; this means that they will speed up a reaction with out becoming used up. The enzymes for this by not actually interfering with the reaction its self but basically align the two substrates on the active site of the enzyme. Amylases are widely spread enzymes that hydrolyse starch to maltose. They are often found in two forms, a-amylase, which degrades starch molecules into, fragments 10 glucose residues long and b-amylase, which breaks down these into maltose, made up of two glucose molecules. Both work by hydrolysis adding one molecule of water across glycosidic link. Hypothesis My hypothesis is that as the time of the enzyme reaction goes on the amount of substrate reacted by time goes in a proportional relationship. In theory time Vs substrate concentration should have a proportional relationship as the relative enzymes will all have plenty of the substrate molecules to align with, therefore creating a constant time for the reaction. The substrate being used is starch, starch is widely found inn various substances. It is greatly found in bread, the starch is a very useful nutrient for human life forms as it is the source for sugars, which produce energy for

  • Ranking:
  • Word count: 4626
  • Level: AS and A Level
  • Subject: Science
Access this essay

Affect Of Varying Salt Concentration on Red Blood Cell Haemolysis

COURSEWORK INVESTIGATION Affect Of Varying Salt Concentration on Red Blood Cell Haemolysis Tahir Aziz CONTENTS > Plan > Outline method > Key variables > Risk assessment > Preliminary results > Method > Results of control experiments > Results > Conclusions > Main trends and patterns > Explanation of results > Experimental limitations Affect Of Varying Salt Concentration on Red Blood Cell Haemolysis Abstract The average adult has about five litres of blood living inside of their body, coursing through their vessels, delivering essential elements, and removing harmful wastes. Without blood, the human body would stop working. Blood is the fluid of life, transporting oxygen from the lungs to body tissue and carbon dioxide from body tissue to the lungs. Blood is the fluid of growth, transporting nourishment from digestion and hormones from glands throughout the body. Blood is the fluid of health, transporting disease fighting substances to the tissue and waste to the kidneys. Because it contains living cells, blood is alive. Red blood cells and white blood cells are responsible for nourishing and cleansing the body. Since the cells are alive, they too need nourishment. Vitamins and Minerals keep the blood healthy. The blood cells have a definite life cycle, just as all living organisms do. Approximately 55 percent of blood is plasma, a straw-collared clear

  • Ranking:
  • Word count: 3109
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Ways in Which Organisms Use ATP

The Ways in Which Organisms Use ATP ATP, the standard abbreviation of Adenosine-5'-triphosphate is a multifunctional nucleotide used in cells as a coenzyme, and can be best summarised as the standard energy currency universal to all organisms, and as such is utilised in metabolic (and other) processes throughout the cells of organisms, and is highly adapted to its function therein due to its high instability in aqueous solutions (eg tissue fluid) due to its easily hydrolysable phosphoannhydride bonds which when broken release a proportionally huge amount of energy. ATP is required during the contraction of skeletal muscle. ADP is released by the myosin head, this allows it to change shape thereby pulling the actin filament across itself. In order to detach the myosin molecule (for it to bind to a myosin binding site further along the actin) ATP binds to the myosin head, where it is hydrolysed to release ADP (which remains on the head) and inorganic phosphate. The energy released allows the myosin head to resume its normal position prior to the release of its ADP molecule, ready to bind further along the actin filament. Furthermore, ATP is utilised elsewhere within the same process, as it is used by carrier proteins on the membrane of the sarcoplasmic reticulum as a source of energy for the active transport of Ca2+ ions into the sarcoplasmic reticulum. It is when these

  • Ranking:
  • Word count: 1102
  • Level: AS and A Level
  • Subject: Science
Access this essay

Enzymes in agriculture.

Enzymes in Industry and Medicine by David Harder Enzymes in agriculture The only major agricultural area to utilise enzymes is the feeding of monogastric animals. There are two applications, which currently utilise enzymes. Biological silage inoculants frequently contain enzymes in addition to lactic acid bacteria. The enzymes in such products partially breakdown some of the cell wall components of the plant material to be ensiled into soluble sugars. These liberated sugars are then metabolised by the natural or applied lactic acid bacteria such as Lactobacilli or Pediococci into lactic acid, which reduces the pH and so ensiles the crop. Some enzyme preparations have been reported to improve the utilisation of feeds for ruminant animals. The use of enzymes in arable agriculture especially in the processing of some major crops and in waste disposal systems is areas, which has not been fully investigated. Enzymes in baking Bread baking is one of the most common food processing techniques throughout the world although the bread products of different countries vary in their finished form. The basic component of all bread is wheat flour to which is added water, salt and yeast. Other ingredients are sometimes added such as sugar, fats and flavouring components. The main components of wheat flour are starch, protein and fibre. The wheat flour has naturally occurring enzymes

  • Ranking:
  • Word count: 1765
  • Level: AS and A Level
  • Subject: Science
Access this essay

How does the concentration of enzymes affect the breakdown of starch by a-amylase in biological washing powders?

How does the concentration of enzymes affect the breakdown of starch by ?-amylase in biological washing powders? In the cleaning business, it's important to get a maximum cleaning effect at a minimum cost. This is especially applicable to the washing of clothes (both commercially, before an item of clothing goes on the market, or at home). This means trying to wash clothes at the lowest possible temperature, to keep the amount of electricity used at a minimum, yet trying to make and maintain a low-priced washing product that cleans effectively. This is why many washing powders use enzymes: enzymes are biological catalysts that speed up the breakdown of certain substances (in this case the molecules in food stain). Enzymes have a certain optimum temperature (a temperature at which the enzymes function at its best). Optimum temperatures are different for every enzyme, but they tend to be around 45°C. This means that if enzymes are to be used in washing powders, the temperature at which the clothes are washed will have to be at the optimum temperature, in order to achieve maximum enzymatic effect. This optimum temperature, in the case of the enzymes concerned (the enzymes that break down protein, fats and starch in food stains on clothes), is lower than the normal washing temperature of clothes, 60°C, which means the use of enzymes in washing powders will reduce the washing

  • Ranking:
  • Word count: 12799
  • Level: AS and A Level
  • Subject: Science
Access this essay

Studying the Effect of Salt on Cress Germination

PLANNING Initial Method . Prepare 8 sterile Petri dishes with a perfectly fitting circle of cotton wool and filter paper, this will sit on top of the wool 2. A control dish must also be set up using the same steps as above 3. Weigh out 8 different salt measures, at 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75 4. Measure out 8, 50ml beakers of distilled water 5. Add the one measure of salt into a beaker (1 beaker for each weight) and stir until the salt is dissolved and cannot be seen 6. Add one drop of Plant nutrient growth (e.g. baby bio) to each solution 7. Add each solution into individual Petri dishes which were made up earlier on, make sure the cotton wool and filter paper are allowed a small amount of time to absorb as much water as possible before the next step 8. Add 10 Cress seeds to each of the 8 solutions and place the lid on the dish 9. Place the dishes in are area which is well lit by natural light 0. Check the dishes each day for a week and top up each dish with the same solution if it is becoming dry, add the same amount to each dish (record what you add) 1. Count and record the percentage I chose to carry out my method in this fashion as it gave me the best way to see which salt concentration had the biggest effect. I chose 8 solutions as it gives me a good range to monitor the salinity effects. The solutions are based on findings in earlier research

  • Ranking:
  • Word count: 1766
  • Level: AS and A Level
  • Subject: Science
Access this essay

Problem - Maintaining the habitat of the capybara and breeding them for meat.

Problem - Maintaining the habitat of the capybara and breeding them for meat. The capybara (shown left 10) is currently classified as a common species in the 2000 IUCN Red List of threatened species. However, I have found through research that the number of capybara in the wild is declining, "Mortality from hunting is responsible for local extinctions or scarcity in many localities".1 Also this is confirmed by the statistic, "Today barely 100,000 capybaras are left in Venezuela". 2 The classification of the capybara as 'common' also means that people are unaware of the affect hunting will, and is having on the population of capybara living in the wild. The conservation of the capybara is overlooked by most people as it is considered a pest, due to its tendency to raid crops when fresh grazing is not available. The capybara has a great variety of habitats from forest and brush land to swamps, brackish mangrove areas and open savannah. The habitat needs to have all the components of water, dry ground on which to rest, grass and natural shelter1. These habitats are being destroyed by human activities, such as pollution of freshwater and the drainage of wetlands for agricultural use of the fertile soil, causing damage to the environment where the capybara seeks refuge from predators. Water is being abstracted for human usage increasing the threat to freshwater habitats.

  • Ranking:
  • Word count: 2865
  • Level: AS and A Level
  • Subject: Science
Access this essay

The cloning of Dolly.

Contents Subject Page No. Introduction 2 Definitions of Terms 3 - 4 Arguments for and against 5 - 10 What the law states on the subject 1 Case studies 2 - 14 Islamic Perspective on Cloning 5 - 17 Personal Evaluation 8 Bibliography 9 Introduction Cloning On the 23 February 1997, the world woke up to news of a new technological advance. This advance was embodied in a "little lamb" going by the name of Dolly. At first glance, one could be forgiven for wondering what was so special about this white-faced sheep. Dolly looked like hundreds of the other lambs that dot the hills and fields of Scotland; and indeed for six months this lamb had grazed quietly and unnoticed among them. Dolly appeared positively ordinary. However, Dolly, despite appearances, had a most unusual conception. She was not the end result of a fusion of sperm with egg, which had been cloned from a single cell taken from the breast tissue of an adult sheep. It was the idea that this technology could be applied to humans. The cloning of Dolly raises serious ethical questions, particularly with respect to the possible use of this technology to clone human embryos. Religious groups across the world wondered if this is a miracle was to which we can thank God for, or to ignore it as an ominous way of playing God ourselves. Ethical choices must also have to be made. The public response to

  • Ranking:
  • Word count: 4230
  • Level: AS and A Level
  • Subject: Science
Access this essay

Find the relationship between amount of fat and amount of energy produced in different foods.

July 2001 Biology Coursework Year 10 Aim Find the relationship between amount of fat and amount of energy produced in different foods. Planning I am going to ignite different foods and see how much heat energy they give out. The food that causes the biggest amount of change in temperature will have the most amount of energy. However, calculations have to be carried out to create an average energy output per gram. Variables Independent Variables: This will change from food to food, thus giving me a range of different results. In this experiment it will be type of food. Dependant Variable: This is the amount of Energy per gram which can be calculated Controlled Variables: These are the things that will keep the same, in order to sustain a fair test. These are; * Apparatus * Type of boiling tube * Distance of boiling tube from Bunsen burner * Distance of food from boiling tube * Amount of time taken to move ignited food to boiling tube Fair Test It is essential that I keep it a fair test in order to sustain accurate results for comparison at the end. To ensure a fair test, I must keep the controlled variables for every test I do. The apparatus must all be kept the same because there may be some minor differences in insulation properties, or measure of accuracy between them. If this were to happen, it would prevent me from sustaining accurate results. The same

  • Ranking:
  • Word count: 4415
  • Level: AS and A Level
  • Subject: Science
Access this essay