Drug: Antacid Effectiveness Analysis To determine the neutralizing ability of antacids in different brands using back titration

Authors Avatar
Project Title

Drug: Antacid Effectiveness Analysis

To determine the neutralizing ability of antacids in different brands using back titration

Objectives

. To determine the neutralizing ability of antacids in different brands.

2. To compare the effectiveness of commercial antacids and their side effects.

Reasons for Choice of Topic

In nowadays, many HK people are suffering from upset stomach due to heavy workload, nervous tension due to the stress of daily life and poor eating habit, which is eating too much high-fat foods too quickly. They usually use antacid therapy to relieve the symptoms. From our previous knowledge, we know that antacids contain weak bases to neutralize the excess antacid in the stomach. Every day we are bombarded by commercials dealing with acid indigestion. Each in turn declares they neutralize more acid and provide strongest relief and are fastest acting. Hence, we are interested in which brand of antacid is the most effective medicine and its side effects.

Introduction

Stomach contents are highly acidic due to the action of cells in the stomach walls that secrete hydrochloric acid. The acid environment suppresses growth of bacteria and aids in the digestion process. The acid hydrolyzes proteins and helps to activate the enzyme pepsin, which further breaks down food proteins. The primary component of gastric juice is hydrochloric acid and the pH is very close to 1. This is the pH of a 0.1 M HCl solution. Under normal conditions, the inner lining of the stomach is not damaged by the hydrochloric acid because this lining, the mucosa, is being replaced at a very rapid rate. The stomach often responds to overeating or under stress with a greatly increased secretion of acid. This excess acid can lower the pH, which is normally in the range from 0.9 to 1.5, to the point where discomfort (acid indigestion) is experienced. Upset stomach, indigestion, and gastroesophageal reflux disease (GERD) may occur when the excess acid travels to more delicate tissues, causing a burning, painful sensation which is so-called heartburn. Apart from short-term discomfort and in the long term, gastric and duodenal ulcers may occur as the excess acid denatures proteins composing the stomach wall.

An antacid is taken to neutralize this excess acid. Antacids are over-the-counter medications which are used to decrease the concentration of hydrochloric acid in the stomach. They are available in solid or liquid form and many formulations. Antacids can contain any one or a combination of the following active ingredients: aluminum hydroxide Al(OH)3, calcium carbonate (commonly known as chalk) CaCO3, magnesium hydroxide Mg(OH) 2 and sodium bicarbonate (commonly known as baking soda)NaHCO3. Antacid tablets neutralize the HCl in the stomach according to one of the following reactions, depending on the active ingredient.

Acid + Base --> Salt + Water

NaHCO3 + HCl -->NaCl + H2O + CO2

Al(OH) 3 + 3HCl -->AlCl3 + 3H2O

Mg(OH) 2 + 2HCl--> MgCl2 + 2H2O

Theory

The chemical reaction of antacids:

Antacids react with excess stomach acid by neutralization. It is a chemical reaction, (also called a water forming reaction since a water molecule is formed during the process) in which an acid and a base or alkali (soluble base) react to produce salt and water (H2O).

i.e. HCl + NaOH -->?H2O + NaCl

During the process, hydrogen ions H+ (a bare proton) from the acid (proton donor) or a hydronium ion H3O+ and hydroxide ions OH- or oxide ions O2- from the base (proton acceptor) react together to form a water molecule H2O. In the process, a salt is also formed when the anion from acid and the cation from base react together. Neutralization reactions are generally classified as exothermic since heat is released into the surroundings.

Acids are proton donors which convert into conjugated bases. They are generally pure substances which contain hydrogen ions (H+) or cause them to be produced in solutions. Hydrochloric acid (HCl) and sulfuric acid (H2SO4) are common examples. In water, these break apart into ions:

HCl › H+(aq) + Cl-(aq) OR H2SO4 › H+(aq) + HSO4-(aq)

Bases are proton acceptors which convert into conjugated acids. They are generally substances which contain hydroxide ion (OH-) or produce it in solution. Alkalis are the soluble bases, i.e. a base which contains a metal from column 1 or 2 of the periodic table. To produce hydroxide ions in water, the alkali breaks apart into ions as below:

NaOH › Na+(aq) + OH-(aq)

Examples of bases include sodium hydroxide (NaOH), potassium hydroxide (KOH), magnesium hydroxide (Mg(OH)2), and calcium hydroxide (Ca(OH)2). In this project, antacids are bases.

Explanation of action of neutralization of antacids :

The Lewis definition of acid-base reactions is a donation mechanism, which conversely attributes the donation of electron pairs from bases and the acceptance by acids.

Ag+ + 2 :NH3 › [H3N:Ag:NH3]+

(A silver cation reacts as an acid with ammonia which acts as an electron-pair donor, forming an ammonia-silver adduct)

In reactions between Lewis acids and bases, there is the formation of an adduct when the highest occupied molecular orbital (HOMO) of a molecule, such as NH3 with available lone electron pair(s) donates lone pairs of electrons to the electron-deficient molecule's lowest unoccupied molecular orbital (LUMO)through a co-ordinate covalent bond; in such a reaction, the HOMO-interacting molecule acts as a base, and the LUMO-interacting molecule acts as an acid. In highly-polar molecules, such as boron trifluoride (BF3), the most electronegative element pulls electrons towards its own orbitals, providing a more positive charge on the less-electronegative element and a difference in its electronic structure due to the axial or equatorial orbiting positions of its electrons, causing repulsive effects from lone pair-bonding pair (Lp-Bp) interactions between bonded atoms in excess of those already provided by bonding pair-bonding pair (Bp-Bp) interactions.
Join now!


Determination of concentrations of substances in neutralization:

The experimental method about neutralization is the acid-base titration. An acid-base titration is a method in chemistry that allows quantitative analysis of the concentration of an unknown acid or base solution. It makes use of the neutralization reaction that occurs between acids and bases, and that we know how acids and bases will react if we know their formula.

Before starting the titration a suitable pH indicator must be chosen. In this project, phenothelain is chosen. The endpoint of the reaction, the point at which all the reactants ...

This is a preview of the whole essay