• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I have decided to choose and investigate; "exploring the characteristics of a sensor."

Extracts from this document...

Introduction

Instrumentation Task

Characteristics of an LDR

Introduction

This Instrumentation task is an independent project, aiming to demonstrate my practical, experimental and planning skills. I have the choice of three options in which to do so, and they are as follows…

  • Building and testing a sensor
  • Exploring the characteristics of a sensor
  • Designing and assembling a measurement system, and using the sensor to make a measurement

From these alternatives I have decided to choose and investigate; “exploring the characteristics of a sensor.” I have chosen this criteria as I think I can relate my physics thoughts and experimental skills to this I can relate my physics thoughts and experimental skills to this aspect well. I will decide on a simple sensor so I can use its properties to perform an affective instrumentation task.

I contemplated on doing the other two tasks, as I feel they are a little impractical and I cannot perform them scientifically as well as the characteristics of a sensor.

How will I perform this task?

From the sensors that are available to me I have decided to choose an LDR (Light Dependent Resistor). This is a light detecting sensor in which can be set up simply in a circuit, to explore a characteristic of its properties.

...read more.

Middle

Once the apparatus are set up and all fair test procedures are complete, I must obtain the results. I decided to start the LDR 40 cm away from the light source, and work down to 40 cm. This is so I can just simply cut down the black out tube, rather than re-make it. I will work down from 40cm – 10cm in 2 cm’s at a time. Any less would be a little impractical and irrelevant, but any more could affect the general pattern to the results. I will simply tape the LDR to the ruler as I move it down, and record the readings in a suitable table. The ruler and ray box will be taped down at all times, throught out the experiment.

The readings in which I will record are the voltage across the LDR and the current in the LDR circuit. By doing s o I can calculate the resistance using the formula: Ω = V/I, after the experiment.

Prediction

Generally, I predict that as the light intensity increases the resistance will decrease, resolving the current to decrease as well. I know this due to previous education in physics lessons. Basically as the LDR gets closer to the light source the light intensity increases.

...read more.

Conclusion

To resolve this problem I decided to lower the Voltage to the LDR and so I could use a milli-meter for most of the experiment. This way when dividing the voltage by the current to get the resistance, the gaps between the results will not be as high. This is what Results 3 show, and as you can see by the graph it produces a clear equal increase of resistance in the LDR.

Evaluation

Overall I believe my experiment to be a success, the results were fairly accurate as they followed my prediction and conclusion. However, there was one anomalous result with in the second set of results. At 22cm away from the light source the current increased to 0.04 from 0.03, when in theory it such have decreased. But this little anomaly didn’t prove to be a problem and did not affect the experiment as a whole.

If I was to perform this experiment again I think I would perhaps investigate one other characteristic of an LDR and compare my results. Maybe I could use the LDR and a resistor to form a potential divider to make a light sensor, and see how the brightness of light affects the resistance. This way I could view two different experiments and see which will affect the resistance greater.

image02.pngimage03.pngimage00.pngimage01.png

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Using an LDR to detect the intensity of plane polarised light allowed through a ...

    reaction time * Since it has two different function when biased in different ways, mistakes can arise easily * Not very sensitive to large changes in light * Because of its fast reaction time, often a Cathode Ray Oscilloscope is necessary, making results harder to read.

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    force will be different from time to time; the values of coefficient of the static and kinetic friction will be inaccurate. To get rid of such error, we should pull the block in constant velocity as much as possible; in addition, we can carry out the experiment for several times to obtain a more reliable result.

  1. Making, Calibrating and Testing a Sensor

    gauge how far away from the garage he is unless the driver is fully aware of the length of the car. Then it will be measured at 1cm intervals because the car will reverse slowly and the more frequent the measurements the more aware the driver will be aware of

  2. Sensors cwk. The aim of this coursework is to construct a potential divider circuit ...

    For automatic night lights we need a high output voltage (V2), when it's dark in order to turn on the light, therefore we replace the second resistor with an LDR. This is illustrated in the diagrams on the next page: Suppose the LDR has a resistance of 500?, 0.5k ?

  1. Physics - Sensor Project

    Sensors are generally used to sense, movement, heat, light and many other things. They are used in series or parallel with a fixed resistor which has the same or similar value of resistance as the sensor the circuit required. This is known as a potential divider circuit, as it consists

  2. physics sensor coursework

    intensity/ lux Mean reading/ V Resistance/ ohms 0 7.23 11 774.34 10 6.31 5817.07 20 4.75 2655.12 30 3.87 1840.76 40 3.47 1567.48 50 3.11 1357.14 60 2.75 1173.80 I worked out the resistance by first finding the constant potential across terminal B, using the potential divider equation: V1 = (V R1)/ (R1 + R2)

  1. Practical Project (2863/02): The Characteristics of a Shunt Wound Motor

    avoids too much damage of the bearings in the motor (which would be more of a risk if there was only one strap involved in the experiment). The torque would be measured by taking the tension of the straps and multiplying that by the radius of the motor.

  2. Free essay

    The Relationship Between the Input and Output of an LDR

    Heavy equipment (e.g. the powerpack) could fall and do serious damage to a person's foot. Also, wires could trip people up, this is in the case of the longer thicker wire that will be connected to the mains supply (the powerpack's wire).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work