Investigation of how different concentration of enzyme catalase affects the rate of breaking down substrate hydrogen peroxide

Authors Avatar

Investigation of how different concentration of enzyme catalase affects the rate of breaking down substrate hydrogen peroxide

Introduction

Enzymes are large proteins that speed up chemical reaction. As globular protein, enzymes have a specific three-dimensional shape which is determined by their sequence of amino acids. Despite their large overall size, enzyme molecules only have a small region that is functional. This is known as enzyme’s active site. The substrate molecule is held within the active site by bonds that temporarily form between the R groups of the amino acids of the active site by bonds and all groups on the substrate molecules. This structure is known as enzyme-substrate complex.

Enzymes are classified into several categories, such as hydrolytic, oxidising, and educing. Depending on the types of reaction they control. In this case, the enzyme I will use in the investigation is catalase from celery extract, which is concluding as hydrolytic enzyme. This type of enzyme accelerates reactions in which a substrate is broken down into simpler compounds through reaction with adding up water molecules. Oxidising enzyme, known as oxidises, accelerate oxidation reaction; reducing enzyme speed up reducing reactions in which oxygen is removed.

A substrate is the molecule, which can bind into the active of enzyme. In this case, I will use hydrogen peroxide as the substrate.

Enzyme works in the same way as a key operates a lock. Enzymes’ active sites have a particular shape like a lock and only a particular key ( substrate) can fit into that lock. Enzymes are therefore specific in the reactions that they catalyse. This is known as the ‘lock and key theory’. In practice, unlike a rigid lock, the enzyme actually changes its form slightly to fit the shape of the substrate. In other works, it is flexible and moulds itself around the substrate. As it alters its shape, the enzyme puts a strain on the substrate molecule and thereby lowers its activation energy.

In this case, enzyme catalse has a specific active site, which just for the substrate hydrogen peroxide to fit in, then the reaction takes place. The reaction involved is hydrolysis.

The equation of reaction is:

               2H2O2                           2H2O + O2

Factor that would affect the reaction:

Temperature

At low temperature, the reaction takes place very slowly, this because molecules are moving relatively slowly as have low kinetic energy. Substrate molecules will not often collide with the active site, and so binding between substrate and enzyme is a rare event. Therefore, reaction is slow. A rise in temperature increases the kinetic energy of molecules which therefore move around more rapidly and collide with one another more often. This means at a higher temperature, the reaction will take place faster than a lower temperature and an increasing or a decreasing of temperature will affect my reaction and results. For this reason, I will control this effect by using a water bath to maintain the temperature the same during the whole reaction. As enzyme work best at a certain temperature, this is known as optimum temperature. If the temperature is too low, enzyme cannot work properly; if the temperature is too high, this may denature the enzyme active site and enzyme will lose its function. So to avoid this problem, I will keep the water bath has the temperature of 25°C, which is the room temperature. Therefore enzyme catalase will work properly and temperature will not be a factor to affect this investigation.  

Join now!

PH

Most enzymes also have an optimum pH at which they function best. In human body, most enzyme work fastest at an optimum pH of about 7. For example, the digestive system Pepsin found in the stomach to digest proteins. A change I pH means a change in the concentration of hydrogen ions in the surrounding of the enzyme. This affects the ionisation of R group in the amino acid residues of the protein molecule and the shape of the active site to bind with the substrate. The lower the pH, the bigger the hydrogen ions’ concentration it ...

This is a preview of the whole essay