Investigation on whether Rubber obeys Hooke's Rule

Investigation on whether Rubber obeys Hooke's Rule Plan Introduction Hooke's Rule states that extension of a material is proportional to the tension force applied to it unless the elastic limit is reached, which is the point at which the material no longer obeys Hooke's Rule. There are only a few materials that obey this rule. In this investigation, we will find out whether rubber obeys Hooke's Rule. We will measure in detail the way in which the extension of a rubber band depends on the tension in the band. This will be done by applying various amounts of weights, as it is a continual variation. Hooke's Rule = F = ke * F = Force in Newtons * k = Spring constant * e = Extension in Centimetres Rubber is a natural polymer which is made up of long chains of molecules which are bent back and forth with weak forces acting between them. As the rubber band is stretched, molecules straighten out and allow the rubber band to become larger. Eventually, as the molecules become fully stretched, the long chains will become parallel to each other and can stretch up to ten times its original length. Extra force will make the rubber band break. If the rubber is not stretched to breaking, once the force is removed the molecules tend to curl back again into their original position because of the attraction and cross-links between adjacent molecules. The return is elastic. Hypothesis I

  • Ranking:
  • Word count: 2411
  • Level: AS and A Level
  • Subject: Science
Access this essay

How does the weight hung on the end of a piece of rubber cord affect the extension of the cord?

Experiment: How does the weight hung on the end of a piece of rubber cord affect the extension of the cord? Aim: The aim of this experiment is to investigate how the weight hanging on the end of an elastic cord affects the extension of the cord being pulled downwards. Prediction I predict that the greater the weight applied to the cord, the further the cord will stretch.I predict this because, according to Hooke's Law, extension is proportional to load and so if load increases so does extension and so stretching distance. I think that the extension will be greatest when more weight has been added onto the end. Method: We will look at the effect of the weight applied, as it is a continuous variation. We will vary this by adding 10g of weight onto the end of the cord each time and measuring the length of the cord using a tape measure. We will then record these measurements after repeating each measurement twice and record the extension of the cord by taking the length of the cord originally away from the length of the cord after more weight has been added onto the end. Some background information: Hooke's law: Hooke found out that extension is proportional to the downward force acting on the spring: Hooke's Law: F=ke F = Force in Newtons k = spring/cord constant e = Extension in Metres Hooke's Law, as commonly used, states that the force a spring (or cord

  • Word count: 2391
  • Level: AS and A Level
  • Subject: Science
Access this essay

Find out about the energy changes in a tethered cart.

PLANNING AIM: The aim of this experiment is to find out about the energy changes in a tethered cart. This includes how the amount a spring is stretched affects the distance the cart attached to it will move up a slope. SAFETY: . Wear safety specs at all times, as springs can be very harmful when stretched out of control. 2. Make sure all apparatus is firmly fixed together as the ramp could become a hazard. 3. Normal safety precautions to be kept to at all times. METHOD: Before I start the experiment I intend to find out the elastic constant of the spring. I will do this by working out how much the spring I will use in the experiment stretches when a one Newton weight is attached to it. It is then possible for me to calculate how many Newton's it takes to stretch the spring one meter a, s the amount of Newtons required to stretch the spring is directly proportional to the length the spring stretches. I also intend to weigh the cart to help me make conclusions later in the coursework. The test will be made fair by making sure everything is kept the same except for the thing that I am measuring, which is the distance that the cart travels up the ramp with a certain amount of stretch of the spring. Therefore I will not change the angle of elevation of the ramp from the bench (which includes the height the end of the ramp is from the bench), the same spring and cart

  • Word count: 2372
  • Level: AS and A Level
  • Subject: Science
Access this essay

The aim of the experiment is to determine which factors affect the oscillation of a pendulum.

Introduction: Pendulum, device consisting of an object suspended from a fixed point that swings back and forth under the influence of gravity. Pendulums are used in several kinds of mechanical devices; for example, certain types of clocks use pendulums. The most basic type of pendulum is the simple pendulum. In a simple pendulum, which oscillates back and forth in a single plane, all the mass of the device can be considered to reside entirely in the suspended object. The motion of pendulums such as those in clocks closely approximates the motion of a simple pendulum. A spherical pendulum is not confined to a single plane, and as a result its motion can be much more complicated than the motion of a simple pendulum. Aim: The aim of the experiment is to determine which factors affect the oscillation of a pendulum. Hypothesis: The two factors I have chosen to experiment are length of the string and the angle at which the pendulum is released. Any system, which carries out a repeated "to and fro", is described as an oscillator. Simple examples are a mass on the end of a vertical spring, a pendulum, or a trolley tethered between two springs (A trolley oscillator). The amplitude of an oscillation is the maximum displacement of the system from its rest position. There are a number of other

  • Word count: 2366
  • Level: AS and A Level
  • Subject: Science
Access this essay

The Electromagnetic Spectrum

The Electromagnetic Spectrum The electromagnetic spectrum is the collective name for all types of radiation. Radiation is energy that travels around in waves. The electromagnetic spectrum goes from the waves with the lowest energy to those with the highest energy. Radio Waves Radio waves have the longest wavelengths in the electromagnetic spectrum. They can be from as long as a football to as long as a football pitches. Radio waves carry signals from devices from one place to another invisibly through the air. Radio waves are used for many different jobs: ? In Medicine - radio waves are used to transmit the pattern of a heartbeat through a monitor at a patient's home to a nearby hospital. They are also used to radio the condition of a patient from an ambulance to a hospital. Radio waves are used in medicine when paramedics are dispatched to the scene where they are needed. The hospital can tell the paramedics the condition of the person so that the paramedics can prepare a medical treatment kit. ? In Industry - used mainly in the transportation business. Radio waves can also be used to provide communication on construction sites. ? In Science - radio waves from outside the earth are detected using in radio telescopes. Radio waves are picked up when they hit the antenna of the radio telescope. The wave then goes to the tuner, then to the amplifier, and finally to the

  • Ranking:
  • Word count: 2359
  • Level: AS and A Level
  • Subject: Science
Access this essay

Investigation into the elasticity of a set of springs under differing conditions.

Investigation into the elasticity of a set of springs under differing conditions. Preliminary investigations. The object of this investigation is to discover how springs react to differing situations. I plan to implement several strategies to discover this. I plan on beginning by ensuring that each of the springs are as similar as is possible, I plan to do this by checking that each of the springs are the same length and that they have the same no. of coils. I will conduct the experiment as scientifically as possible; this will be done with the use of accurate tools and the careful tabulation of the results. I will be taking into account the: Variation in the extension of the spring. How the springs are affected with the changing of weights. How the springs are affected when the way in which they are placed is changed i.e. in parallel, series and also when they are on their own. Another product of this experiment will be the proving of Hookes law: K = F / X Spring Stiffness = Force / Extension T = 2 mass K x g (Spring Stiffness is also measured by the gradient of the graph) Where : T = Periodic Time (s) K = Spring stiffness G = Acceleration due to gravity (m/s) This means that K is the spring stiffness (or spring constant), F is the weight or force applied to the spring and X is the extension of the spring after the force has been applied.

  • Word count: 2326
  • Level: AS and A Level
  • Subject: Science
Access this essay

What is the spring constant?

Energy stored in a spring Preliminary investigation What is the spring constant? Planning Aim - to gain an average compression rate of the spring in the trolley in order to find the spring constant. Apparatus Clamp stand 2 clamps 2 bosses, 24 0.98N weights 2 weight holders 3 labels Pencil Sprit level Trolley Ruler (measures to nearest 5 x 10-4m) Diagram Plan - I am going to investigate the spring constant of the spring in the trolley to enable me to calculate the energy stored in the spring in the major investigation. To calculate the spring constant, I need to plot my results onto a graph and draw a line of best fit. The spring constant is equal to the gradient of this straight line. To obtain my results, the above apparatus will be collected and set up as shown above. The spirit level will be used to check that the trolley is perpendicular to the ground. The trolley needs to be perpendicular to the ground for 2 reasons. 1). So that all of the weight of the weights act on the spring and not a component, 2). So that there is no friction between the plunger and it's housing. The variable that is being changed is the force applied to the spring; 0.98N will be added in each of the 12 increments. After each weight has been added to the spring, a pencil mark will be made on the label. When the 12th weight has been added and the pencil mark made, the weights will

  • Word count: 2325
  • Level: AS and A Level
  • Subject: Science
Access this essay

Making sense of data - finding a value for the young modulus of a flexxible strip of material.

MAKING SENSE OF DATA FINDING A VALUE FOR THE YOUNG MODULUS OF A FLEXIBLE STRIP OF MATERIAL I have picked the first method out of the three options of experiments to conduct based on the flexion of a cantilever. I now have to decide on a method of collecting and processing the data for the first method, taking care to reach a value for Young modulus with some estimate of accuracy attached to it. Method 1: Wood (metre rule) Diagram Apparatus . 2 Measuring rulers (1m each) 2. Drawing Pin 3. 9 Weights (50g each, totalling 450g) 4. Approximately 50cm of string 5. G-Clamp 6. Clamp Stand with clamp 7. Screw gauge with a sensitivity of 0.1mm (Micrometer) 8. Vernier Calipers with a sensitivity of 0.2mm The Micrometer Vernier Calipers - read the sliding scale along the top and bottom Variables The variables that will be kept constant are the length of the overhang of the ruler, the position where the ruler is clamped and the position on the ruler where the weights are hung. The only variable that will change during the experiment is the amount of weight that is hung on one end of the ruler to measure the different deflection of the ruler at different heights. The weights that are hung on one end of the ruler will vary each time by adding 50g to the previous weight and each time the deflection of the ruler is read until 450g of weights have been added. Method Arrange

  • Word count: 2205
  • Level: AS and A Level
  • Subject: Science
Access this essay

Resonance in a Closed Air Column Investigation.

Fletchers Meadow Secondary School Resonance in a Closed Air Column Application of Resonance User 4/20/2010 Prediction I think the speed of sound, when using the higher frequency tuning fork; will increase if a low frequency tuning fork is used. When a higher frequency is used, the wavelength is shorter according to the speed equation, where f ? v so when f is high frequency the wavelength is shorter. When wavelength is shorter the speed is also lower compared to a high frequency object. The speed of sound is higher in higher temperature. Using the speed of sound equation the higher the temperature the faster the sound. Observations: Tuning Fork 1 Room Temperature Trial st Resonant Length of Tube 20 cm 2 20 cm 3 20 cm AVG 20 cm Tuning Fork 1 Room Temperature Trial st Resonant Length of Tube 26 cm 2 25 cm 3 26 cm AVG 26 cm Tuning Fork 2 Different Temperature Trial st Resonant Length of Tube 7 cm 2 9 cm 3 6 cm AVG 8 cm Tuning Fork 2 Room Temperature Trial st Resonant Length of Tube 7 cm 2 6 cm 3 6 cm AVG 5 cm Knowledge and Understanding . The sound emitted by each tuning fork is: 2. The speed of the waves using the universal wave equation, for each tuning fork is: 3. The wave speed of the first tuning fork was faster than the wave speed of the second tuning fork. I am surprised because the frequency of the first tuning

  • Word count: 2185
  • Level: AS and A Level
  • Subject: Science
Access this essay

Black Holes Research and Report

Contents Page number 3 What is a Black Hole? Black Hole anatomy 4 Types of Black Hole 5 Event horizon radius 6 Mass of a black hole 7 Hawking radiation 8 What happens when Black Holes Collide? Gravitational lensing 10 Einstein rings Evaluation 11 References Black Holes By doing this assignment I aim to gain a better understanding of the physics behind Black Holes What is a Black Hole? To understand a black hole, you must first have an understanding of gravity in space. Imagine yourself on a trampoline; you make an indentation in the trampoline fabric. If someone was to roll a ball past you on the trampoline, it would begin to spiral towards you, down into the indent you have made. This is very similar to the way gravity works in space and time. The 'fabric of spacetime' is an imaginary mesh running through space (see right) which can be deformed and warped by the gravity of stars and planets. This is the principle upon which black holes work. A black hole essentially is an incredibly compact body which has warped space-time enough to make any escape from the force of gravity impossible. They are thought to be at the centre of galaxies, including our own Milky Way. As the name implies, a blackhole cannot emit or reflect any light; making them practically invisible. If enough mass is concentrated into a small enough region, the curvature of

  • Ranking:
  • Word count: 2181
  • Level: AS and A Level
  • Subject: Science
Access this essay