• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# Practical Assessment for Physics: Investigating the Resistance of Conducting Putty.

Extracts from this document...

Introduction

Practical Assessment for Physics: Investigating the Resistance of Conducting Putty Possible Variables: Thickness, Length, Temperature. Variable to be investigated: Length as it is the most reliable way of creating a fair test. Aim: To see how the variable lengths of the conducting putty will affect the resistants in the circuit. Prediction: I predict an increase in the length of the putty will increase the resistants in the circuit. This is because there is a bigger area for the charges to travel through, with less chance of a collision. I came to this conclusion of my prediction by collecting evidence from an 'AS/A2 Physics' book by Wendy Brown. ...read more.

Middle

(3) I then placed the tip of the copper on each ends of the 1cm putty coil as shown in my diagram. As I was doing this I recorded the voltage reading into a table and disconnected the copper from the putty. I repeated this ten times and collected ten voltage readings for this length of putty. But between each reading I waited for a few seconds so that the temperature would be the same at each reading making it a fair test. I then did exactly the same for recording the results form the amp meter. (4) I repeated stage (3) for the other lengths of putty to have all the readings in my results table. ...read more.

Conclusion

5.63 8 4.36 4.65 5.13 5.36 5.57 9 4.25 4.73 5.06 5.35 5.65 10 4.29 4.70 5.09 5.36 5.62 AVERAGE 4.315 4.725 5.084 5.349 5.596 CURRENT READING Reading No. 1cm 3cm 5cm 7cm 9cm 1 0.44 0.24 0.18 0.13 0.11 2 0.39 0.25 0.17 0.11 0.09 3 0.42 0.23 0.19 0.11 0.10 4 0.43 0.28 0.20 0.14 0.11 5 0.44 0.25 0.22 0.13 0.11 6 0.40 0.27 0.17 0.14 0.10 7 0.41 0.28 0.19 0.12 0.09 8 0.44 0.26 0.21 0.14 0.10 9 0.43 0.24 0.16 0.13 0.11 10 0.44 0.27 0.19 0.14 0.09 AVERAGE 0.424 0.257 0.188 0.129 0.101 RESISTANTS (VOLTAGE AVERAGE DIVIDED BY CURRENT AVERAGE) 1cm 3cm 5cm 7cm 9cm 10.1769 18.3852 27.0426 41.4651 55.4059 Conclusion: Sohail Deen 11H 29/01/03 1/4 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Electrical & Thermal Physics essays

1. ## Does the length of a conduction putty affect its resistance?

digital multi-meters - I chose to use Digital multi-meters over Moving coil meters, as they are less accurate; Digital multi-meters play their readings to an accuracy of 0.01 Volts, plus or minus 0.005 Volts, whilst Moving coil meters display their readings to only 0.1 Volts, plus or minus 0.05 Volts.

2. ## Coursework To Find The Internal Resistance Of A PowerSupply

To avoid this problem, connecting wires will be pressed well into connections and once the circuit has been set up, the wires will not be disturbed in order to avoid connections becoming loose.

1. ## To investigate the factors which may affect the resistance of resistance putty.

To calculate resistance, one needs to know the current reading (in Amperes) and the potential difference over the object we are trying to find the resistance of (measured in volts). To work out the resistance from these two values, the formula: - V = R (i.e. Potential Difference = Resistance)

2. ## The aim of this investigation is to find out if the length of an ...

flow through the graphite putty will depend on its resistance. We shall use an ammeter to measure the current and a voltmeter to measure the voltage. We shall calculate the resistance of the resistor using Equation 1 (Divide voltage by current will give resistance).

1. ## Investigating how temperature affects the resistance in a wire

Method: Input variable - The temperature in which the current passes through the wire (steel) is the input variable, because this is the variable that we control it is therefore the independent variable. Output variables - The voltage and the resistance (measured by the multimeters)

2. ## To investigate the resistance of a conducting material as its length changes.

Preliminary Experiment - to investigate the effect change of temperature has on resistance in graphite. Introduction: I know that graphite is a semi-conductor from personal knowledge; what this means in terms of resistance is that although the amount of collisions between electrons and atoms increases as the temperature increases -

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to