• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3

# Relating the Physics of Rollercoasters to Space Travel

Extracts from this document...

Introduction

The concept of ‘space travel’ has always been a great feat for humans. The Apollo program was the first initiative which successfully landed humans on the moon and was a result from the ‘space race’ between the Soviet Union and the United States. The program began after President John F. Kennedy declared in 1961 the goal of landing on the moon before the end of the decade. Along with this declaration came the complications of space travel. These included consideration of Newton’s three laws of motion, gravity and weight, energy considerations and transformations and trials linking space travel to the physics of roller coasters.

Newton’s First law of Motion states that ‘objects at rest will stay at rest and objects in motion will stay in motion and in the same direction unless acted upon by an unbalanced force’. When launching a rocket, forces are constantly becoming balanced and unbalanced. For example, a rocket on a launch pad is balanced as the surface of the pad pushes the rocket while gravity attempts to pull it down.

Middle

Newton’s third law of motion states that for every action there is an equal and opposite reaction. When a rocket launches, the action is the expelling of gas out of the engine. The reaction is the movement of the rocket in the opposite direction. To enable a rocket to lift off, the thrust (action) must be greater than the mass of the rocket. This is different in space however, where even minute thrusts will cause the rocket to change motion. Moving through the air causes drag, impeding the motion of the rocket. As a result rockets are able to work much better in space where there is no air. These points needed to be taken into consideration when planning the Apollo project.

Gravity and weight are important considerations in space travel. Scientist has found that it was advantageous to launch rockets closer to the equator as the Earth rotates at a greater speed at the equator than at the poles. This is because the Earth is oblate (wider around the middle as it is not a perfect sphere).

Conclusion

Using the physics of roller coasters have assisted engineers and scientists in perfecting space travel. Concepts of roller coasters such as free fall and acceleration are all experienced during space travel. Feelings of low and high-gravity on rollercoasters have been designed to imitate turbulence, acceleration and free falls on air and spacecrafts. Modern technology has enabled the recreation of various gravitational conditions of space travel and vertical loops of a rollercoaster. Using these concepts, low-gravity research aircraft which fly in parabolic shaped paths have become available, enabling researchers to investigate the effect of microgravity on astronauts and conduct experiments to further increase knowledge on space travel.

It can therefore be concluded that the Apollo program which landed the first man on the moon was truly a great feat. Many complicated calculations and principles of physics needed to be accounted for in order to ensure its success, with information taken from various sources. Consequently, the Apollo program was also one of the most costly and intricate tasks of the time, made achievable by immense motivation.

http://www.grc.nasa.gov/WWW/k-12/rocket/rktwt1.html

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Fields & Forces essays

1. ## Investigating the forces acting on a trolley on a ramp

5 star(s)

In order to incorporate this percentage error into the final percentage error, it is necessary to take the maximum possible percentage error; (2.5 / 350) x 100 = 0.71% (2d.p.) Figure 4 - A diagram showing possible places from which the beam could begin.

2. ## Determination of the acceleration due to gravity (g)

4 star(s)

This can in turn be used to calculate the acceleration of the mass and the tape by using the equation: Acceleration( g ) = change in velocity / time Using a light gate A weight can be attacked to a card 'inter-put'.

1. ## Objective To find the acceleration due to gravity by means of a simple ...

It causes the error in calculating the slope and so the acceleration of the motion. Absolute error of length = 0.2mm Absolute error of time = 0.01s Experiment value of g = 9.52 ms-2 g = ==> = 2 Find the for each experiment by using the above formula: Effective

2. ## Physics of Rollercoasters

Some adjustments were made to improve the rollercoaster including adjusting the slopes and attaching more cardboard for reinforcement. 6. Camera was turned on for filming. 7. Ball bearing was dropped 5cm below the tip of the rollercoaster. 8. Results were recorded using a camera for filming.

1. ## Measuring The Constant g; The Acceleration Due To Gravity

the efficiency of my experimentation, as well as to obtain simple ways to reduce my systematic error. Experiment 1 Ball Drop Height (Metres) Time For Ball To Drop2 (Seconds2) 2SF Calculated g (ms-2 ) , 3 SF 2 0.45 9.87 These results show no major issue with accuracy, as my

2. ## Force of friction

2.4 2.2 3.4 3.2 5.2 5 Normal force R /N (Weight of the blocks) 3.92 5.89 7.89 Disscusion: 1. Description of the shape of the graph of frictional force against the applied force The graph was like a right angle triangle and followed by a rectangle with smaller height.

1. ## Building a hovercraft with household objects.

Spray the tarp with adhesive as you fold it up onto the top, then use the staple gun to staple it down securely. Once the plywood is covered, flip it upside down, to apply pressure to the overlapped tarp to help it dry nicely.

2. ## Investigating the relationship of projectile range and projectile motion using a ski jump.

I need to make sure the landing zone is clear of obstacles. I will make sure there are no breakable objects around because the metal ball will bounce for a distance before it stops. Variables Dependent: The distance between the table and the point of contact of the ball barring.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to