• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8

The effect of temperature on the break down of starch to maltose by amylase

Extracts from this document...

Introduction

Biology coursework by Nanjie Lu -The effect of temperature on the break down of starch to maltose by amylase Planning Aim I will be using many different temperatures to test the time for starch to be broken down into maltose by an enzyme. I will try to find out the shortest time it takes for the starch to be broken down, this will show what the enzyme's optimum temperature is. Factors that could affect my investigation There are many different factors for this experiment but I chose the temperature one to study. Other factors are pH (acid value), concentration, inhibitors are important too. Prediction *The best temperature for breaking down starch is between 60 and 70 degrees C. This is because this is the temperature at which the enzyme works most efficiently (Only 3 minutes). The information is from table 1. *At a temperature of 10 degrees C the enzyme did not catalyse the reaction, because when I makes test, the starch had not been broken down by enzyme. I think the starch molecules were not moving quickly enough. So they did not collide with the active site. When the temperature was 85 degrees C or higher the molecules did not work, because heat changes the shape of active site of an enzyme. ...read more.

Middle

6. When I see the colour has changed from black to orange then I am going to write down the time it takes. 7. I am going to measure the temperature at the end and stop the clock. I will repeat this method at different temperatures to find out the quickest time to complete this experiment. These will be 30?C, 40?C, 50?C, 60?C, 70?C, 80?C, 90?C and 100?C. I will make the amylase reach these temperatures by heating the water as show in the diagram. Iced water Temperature is 70 degrees water Temperature stat=1.0 degrees C Temperature end=0.0 degrees C Average=0.5 degrees C Temperature star=72.0 degrees C Temperature end=71.0 degrees C Average=71.5 degrees C Time (s) colour colour 30 black dark brown 60 black brown 90 black brown 120 black brown 150 black light brown 180 black light brown 210 black light brown 240 black light brown 270 black light brown 300 black light brown 330 black light brown 360 black light brown 390 black light brown 420 black light brown 450 black light brown 480 black light brown 510 black light brown 540 black light brown 570 black light brown 600 black light brown Accuracy * Record exact temperature in ?C at the start and end and find the average. ...read more.

Conclusion

Below 28?C the enzyme work so slowly it took more than 10 minutes (this result is from table one) to break down the starch. * Molecules move slowly into active sites. High temperatures * Above 95?C the enzyme did not break down starch. This is because the heat changes shape of active site. This is because the molecules are vibrating very quickly. The enzyme is denatured. Evaluation My procedure was successful because I found an accurate optimum temperature that was close to the preliminary optimum temperature. My evidence is reliable because the temperatures I plotted were the average of start temperature and end temperature. I have an odd result on table five graph and another odd result on the table three graph I am not sure why these results are wrong. To make the result more reliable I could use an electric heated water bath that would stay at the temperate I wanted exactly. Some of the temperatures that I plotted may not be very accurate because I use the average of start temperature and end temperature. I do not think my evidence supports a strong conclusion because the table three graph and table five-graph gave optimum temperatures that are 6 degrees C different. I could extend this enquiry by testing other enzymes and by testing for temperatures every 2 degrees C between 66 degrees C to 80 degrees C. 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

Related AS and A Level Molecules & Cells essays

1. effect of concentration of copper sulphate on the action of amylase to break down ...

4 star(s)

* Very harmful to respiratory system. * Irritate eyes. * Solid burns skin. * Large amount of vapour form if heated. * Wear safety glasses. * Wear nitrile gloves. * Used in well ventilated area. * Use a fume cupboard if iodine likely to vapourised. * Avoid eye, skin contacts.

2. How does the concentration of enzymes affect the breakdown of starch by a-amylase in ...

4 star(s)

Diameter of clearance rings (mm) 10 27.4 8 23.0 6 21.4 4 21.0 2 20.2 0 0.0 These results show that a good increase in the results is shows, as expected. However, to make the results for each concentration more distinct, I will leave the agar plates in the incubator/oven for a period of 24 hours for the real experiment.

1. Investigating the effect of temperature on the breakdown of starch by amylase.

In order for it to function most efficiently in the body, amylase must have an optimum temperature of 40oC. The reason why the amylase was less effective at higher temperatures was that it had started to denature. All enzymes start to denature at temperatures above their optimum temperatures, which renders them unable of catalysing reactions.

2. Investigating factors which affect the rate of the Amylase Enzyme in converting Starch to ...

I have extra solution to allow for spillages and other various experimental errors. - To make the starch 1% I will dilute a sample of starch 100%. The ratio for this solution would therefore be: 1 part starch 100%: 100 parts water - In total there are therefore 101 parts

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to