• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23

The Effects of Strong and Weak Acids on the Order of a Reaction.

Extracts from this document...


Aim To investigate the effect strong and weak acids have on the rate of a reaction and its order. Introduction What is a chemical reaction? This is the first question that needs to be answered before tackling this investigation. A chemical reaction is the process which results in the chemical conversion of one substance into another. These reactions can be placed into two groups; exothermic and endothermic reactions. If the energy given out of the reaction is greater than the energy taken in, the reaction is known as an 'Exothermic Reaction'. Similarly, if the energy taken in is greater than the energy given out, the reaction is known as an 'Endothermic Reaction'. The easiest way to determine if a reaction is Exo/Endothermic is to observe any temperature changes within or after the reaction has taken place. If the surrounding temperature drop, the reaction is exothermic and if the temperature increases, the reaction is exothermic. Although it is true that every substance has the potential to be converted into another, it is also true that before a reaction happens, certain criteria needs to be met. For a reaction to happen, the particles must collide with the correct amount of energy - also known as the 'Activation Energy'. The Activation energy is the lowest amount of energy a particle needs in order for it to successfully collide with another and for the reaction to take place. So, for a reaction to 'go', a certain number of particles have to have the correct amount of energy. Although the activation energy for a reaction can never be changed, outside factors can affect how many particles in the reaction have the minimum energy requirement to react successfully. Figure 1: http://www.docbrown.info/page03/3_31rates.htm#3a As you can see from the above diagrams, the Activation energy (Ea) is the difference between the transition state of the particles - the state where the old bonds aren't yet fully broken and the new bonds aren't yet fully formed. ...read more.


The beginning of the reaction between the Magnesium Ribbon and the acid was very fast and the slowed down towards the end. It is the beginning which is crucial in finding the initial rate of the reaction, so I decided to decrease the time intervals so I was able to get better results. Activation Energy For the Activation Energy experiments I had to first find the volume of gas that was the most appropriate to measure. For this, I had to do the experiment with HCl and C2H3OOH at a high and low temperature. This was so that I can find a volume which suited both's initial rates of reaction. HCl - Time (s) Volume (cm�) at 20� 0 0 5 6 10 10 15 14 20 18 25 21 30 24 35 25 40 26 45 28 50 29 55 30 Time (s) Volume (cm�) at 70� 0 0 5 16 10 21 15 25 20 28 25 30 30 32 35 34 40 37 45 39 50 40 C2H3OOH - Time (s) Volume (cm�) at 20� 0 0 5 2 10 5 15 7 20 10 25 14 30 20 35 23 40 26 45 30 50 33 55 36 60 39 65 42 70 45 75 51 80 53 85 56 90 57 Time (s) Volume (cm�) at 70� 0 0 5 10 10 22 15 35 20 45 25 55 30 60 35 67 40 72 45 76 50 78 55 78 I then drew a graph to illustrate the date above and worked out a suitable amount of Hydrogen gas to measure: After drawing the graphs and finding suitable volumes to measure for each, I had to decide which temperature I wanted it to be measured at. My initial though was every 20 degrees: 20 �, 40 �, 60 � and 80 �. After a test run for each temperature, I found that these temperatures were perfect to use. ...read more.


This is a very large change and could account for some of the errors made. Another error I found was not sealing the system fast enough. This was most apparent when using the highest temperatures and during the preliminary experiments with the Magnesium Powder. Not getting the bung on quickly enough meant that some of the gas escaped before being sealed in the syringe and so the initial rate of the reaction would be skewed. As the reaction in higher temperatures happened rather vigorously, once the first few seconds have passed, the reaction may have reached its peak already. Not sealing the tube quickly enough would mean that an accurate reading of the results wouldn't have been possible to obtain. If I were to conduct this experiment again, there would be some errors that could possibly be eliminated. Getting another person to start the stop-clock whilst I drop the Magnesium into the reaction and seal it with a bung would be the first correction. This would severely reduce the amount of gas which had escaped from the system in my previous experiment. The Oxide layer coating the Magnesium, although previously sanded, would have inevitably built up during the course of the experiment. Sealing the pieces in an air-tight container would reduce any reaction from occurring before the pieces are used. Using a burette to measure out the acid volumes rather than a measuring cylinder would definitely make the quantities more accurate and the results more reliable. Using water baths like I had previously to keep the temperature constant would be used again to stop any outside temperatures from affecting the rate of the reaction. I would also change my experiment slightly and use Mono and Dibasic acids instead. This way, I could potentially see whether two strong acids with a different number of acidic Hydrogens react differently and affect the order and activation energy significantly. Using Sulphuric acid and Hydrochloric acid would be my choice. ?? ?? ?? ?? Chemistry Coursework The Effects of Strong and Weak Acids. 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    moles I will need (0.1 x 250 x 286/1000) = 7.15g of Na2CO3�10H2O in 250cm3 The error on a 2dp balance would be � 0.005g. I would need to tare the balance before I weigh my solid, so this error would be doubled for every weighing because the balance needs to estimate 0.00 and the actual weight of the solid.

  2. effects Concentration and Temperature on the Rate of Reaction

    When this is the case it means there are two steps involved in the reaction - this is known as the reaction mechanism. Where there are two or more steps it is the slowest step that determines the overall rate.

  1. Titration Coursework

    If I by any chance overfill it, I will have the start all over again as overfilling it would alter its concentration. 6. Having mixed the distilled water and sodium carbonate together, I will then mix the solution in the volumetric flask by inverting it 10 times with the lid on.

  2. Bleaching experiment. Estimation of available chlorine in commercial bleaching solution.

    To solve this problem, the more or excess amount of potassium iodide until the black precipitate disappears. (4)Suggest the possible sources of errors in this experiment. In this experiment, apart from the careless errors, (e.g. the solution of burette was not all run into the conical flask)

  1. Cube compressive strength test

    Discussion: The test of the three cubes was just created for 14 days only; therefore the strength is expected to grow slowly a little bit more in the following 14 days after. The graph shows the growth of strength of concrete.

  2. An experiment to identify substance X using thin layer chromatography.

    Set up of the experiment Results Aspirin = 6.3cm Paracetamol = 4.5 cm Caffeine = 2.6cm Substance X =(1st)2.6cm, (2nd)4.3cm, (3rd)6cm Solvent front = 7.7cm Calculations Rf = Distance from start to centre of spot Distance from start to solvent front Analgesic Aspirin Paracetamol Caffeine Substance X Distance from start to centre spot (cm)

  1. Chemistry Iodine Clock

    We will be using 1.00 mol dm-3 of Potassium Iodide and making 250cm3 of solution. The 250cm3 needs to be converted in decimetres cubed (dm3) so we need to divide 250cm3 by 1000 to get 0.25dm3 Number of moles = 1.00 x 0.25 = 0.25 moles Now that we have

  2. Percent Yield Experiment. The limiting reagent for this experiment is strontium chloride hexahydrate. ...

    These insignificant substances, in additions to those not named here, can change the way the reaction takes place. Thirdly is lingering moisture, which can be present because of thick acumulation of precipitate which causes moisture to remain at its center.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work