The force you exert on pulling back a rubber band, which will in turn catapult an empty margarine tub, affect the distance which the margarine tub will travel.

Authors Avatar

                WenXi Chen

Margarine Tub Investigation

Aim

The target of this investigation is to find out how the force you exert on pulling back a rubber band, which will in turn catapult an empty margarine tub, affect the distance which the margarine tub will travel. We will not be changing any of the other factors of the experiment, only the force and extension of the rubber band, for that is the variable which we are investigating.

Prediction

I predict that the more force you exert, the further the margarine tub will travel, however, I think that the force and distance relationship will not increase evenly, instead it would first increase rapidly, then the increase will be less significant, and then rise slightly.

Scientific reason for prediction

Rubber is not a material which obeys Hooke’s law and its extension doesn’t increase uniformly. Some elastic materials are intended to absorb energy. The greater the force that is applied, more the rubber band is extended. The force in the rubber band is stored as potential energy which is reverted into kinetic energy once I have let go of it, this energy is transferred into the margarine tub as kinetic energy and therefore it moves. A stretched or compressed elastic band is capable of doing work when released. As the rubber band is released, the force that it exerts diminishes with distance.

Equipment

  • Rubber band
  • Chair/stool
  • Rulers
  • An empty margarine tub
  • A newton meter that goes up to 10N

Procedure

  • Loop the rubber band around the front legs of a chair.
  • Place a margarine tub at the centre of it.
  • Place 2 metre rulers in a row from the position of the margarine tub.
  • Hook a newton metre on to the centre of the rubber band and pull it back in accordance with the required force.
  • Release newton metre.
  • Measure and record the distance travelled by the tub.
  • Repeat for the other forces.
Join now!

Diagram

Fig.1 Front view of apparatus.

Fig.2 Side view of apparatus

Fair test

We made sure that it was a fair test by the following conditions:

  • All tests were carried out on the same surface to minimise variations in friction, etc.
  • All tests were carried out with the same rubber band; elasticity, energy storage potential, etc, may be different in various rubber bands.
  • Use the same margarine tub for all tests or the mass, size and shape may vary.
  • Always place the tub in the same position at the start of each experiment.
  • Make ...

This is a preview of the whole essay