Beyond Pythagoras
Extracts from this document...
Introduction
Daniel Cook 10R
Beyond Pythagoras: Year 10 GCSE Coursework
I am going to study Pythagoras’ theorem. Pythagoras Theorem is a2 + b2 = c2. ‘a’ being the shortest side, ‘b’ being the middle side and ‘c’ being the longest side (hypotenuse) of a right angled triangle.
For example, I will use 32 x 42 = 52 . This is because:
32 = 3 x 3 = 9
42 = 4 x 4 = 16
52 = 5 x 5 = 25
So.. 9 +16 = 25
For this table, I am using the term a, b, b + 1
Triangle Number (n) | Length of shortest side | Length of middle side | Length of longest side | Perimeter | Area |
1 | 3 | 4 | 5 | 12 | 6 |
2 | 5 | 12 | 13 | 30 | 30 |
3 | 7 | 24 | 25 | 56 | 84 |
4 | 9 | 40 | 41 | 90 | 180 |
5 | 11 | 60 | 61 | 132 | 330 |
6 | 13 | 84 | 85 | 183 | 546 |
7 | 15 | 112 | 113 | 240 | 840 |
8 | 17 | 144 | 145 | 296 | 1224 |
Formulas
Shortest side = 2n + 1, n being the triangle number
Middle side = 2n2 + 2n. This is because:
Triangle Number
1 = 2 x 2
2 = 3 x 4
3 = 4 x 6
Middle
4n³
2n²
2n
+1
2n²
2n
1
= 4n4 + 8n³ + 8n² +4n + 1
A + B = C
4n² + 4n + 1 + 4n4 + 8n³ + 4n² = 4n4+ 8n³ + 8n² +4n + 1
My results show that shortest² + middle² = longest². I have Pythagoras’ theorem.
For this table, I am using the term a, b, b + 2
Triangle Number (n) | Length of shortest side | Length of middle side | Length of longest side | Perimeter | Area |
1 | 6 | 8 | 10 | 24 | 48 |
2 | 8 | 15 | 17 | 40 | 120 |
3 | 10 | 24 | 26 | 60 | 240 |
4 | 12 | 35 | 37 | 84 | 420 |
5 | 14 | 48 | 50 | 112 | 672 |
6 | 16 | 63 | 65 | 144 | 1008 |
7 | 18 | 80 | 82 | 180 | 1440 |
8 | 20 | 99 | 101 | 220 | 1980 |
Formulas
Shortest side = 2n + 4. This is because:
2 x 1 + 4 = 6
2 x 2 + 4 = 8
2 x 3 + 4 = 10 etc
Middle side = n² + 4n + 3
Longest side = n² + 4n + 5
Box Methods
Shortest² = (2n + 4)²
2n | +4 | |
2n | 4n² | 8n |
+4 | 8n | 16 |
= 4n² + 16n + 16
Middle² = (n² + 4n + 3)²
n² | +4n | +3 | |
n² | n4 | 4n³ | 3n² |
+4n | 4n³ | 16n² |
Conclusion
Length of longest side
Perimeter
Area
1
12
16
20
48
96
2
16
30
34
80
240
3
20
48
52
120
480
4
24
70
74
168
840
5
28
96
100
224
1344
6
32
126
130
288
2016
7
36
160
164
360
2880
8
40
198
202
440
3960
Formulas
Shortest side = 4n + 8
Middle side = 2n² + 8n + 6
Longest side = 2n² + 8n + 10
Box Methods
Shortest² = (4n + 8)²
4n | +8 | |
4n | 16n² | 32n |
+8 | 32n | 64 |
= 16n² + 64n + 64
Middle² = (2n² + 8n + 6)²
2n² | +8n | +6 | |
2n² | 4n4 | 16n³ | 12n² |
+8n | 16n³ | 64n² | 48n |
+6 | 12n² | 48n | 36 |
= 4n4 + 32n³ + 88n² + 96n + 36
Longest² = (2n² + 8n + 10)²
2n² | +8n | +10 | |
2n² | 4n4 | 16n³ | 20n² |
+8n | 16n³ | 64n² | 80n |
+10 | 20n² | 80n | 100 |
= 4n4 + 32n³ + 104n² + 160n + 100
A + B = C
16n² + 64n + 64 + 4n4 + 32n³ + 88n² + 96n + 36 = 4n4 + 32n³ + 104n² + 160n + 100
All of my research has proved that Pythagoras’ theorem is correct, even if you come at the theorem at different angles; you’re sure to find out that Pythagoras is correct.
This student written piece of work is one of many that can be found in our GCSE Beyond Pythagoras section.
Found what you're looking for?
- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month