Number Stairs

Authors Avatar

Year 11 Algebra coursework – Number Stairs        Laura Bird

I am going to investigate into the stair total of different sized stair shapes on different sized number grids, the stair total being the total of the numbers inside the stair shape. I will then see if I can produce an algebraic formula to calculate this total for any sized stair shape on any sized grid. I shall start by finding a formula for the total of numbers in a 3-step stair on a 10×10 grid (for example see fig. 1), based on one of the numbers inside the stair shape.

Fig. 1

This is a 3-step stair. The stair total for this stair shape would be:

25 + 26 + 27 + 35 + 36 + 45 = 194

I started simple to form some simple equations to calculate the stair total.

Eg 1. For a 3-step stair on a 10×10 grid I came up with the following formula to calculate stair total, based on one of the numbers in the stair shape:

The formula for finding the stair total for a 3-step stair on a 10×10 grid would be:

6x + 44        x being the number in the bottom left of the stair.

I then calculated similar formulas for different sized steps (see Egs) on different sized grids and displayed them in the Table 1 to see if I could notice any patterns:

Egs:

          3-step stair on a 9×9 grid

   

6x + 40

        3-step stair on an 8×8 grid

6x + 36

        4-step stair on a 10×10 grid

        

10x + 110

Table 1

I then went on to develop these original formulas that I found, to find formulas for certain sized step stairs on any size grid. I realised from Eg 1. that in the second row up, the x + 10 (square directly above x) was in fact x + the size of the grid (g), as in that example it is a 3-step stair on a 10×10 grid. As it goes up another row, another grid size is added making it x + 2g and so on. (See Eg 2.)

Eg 2.

3-step stair

3-step stair = 6x + 4g +4

I then went on to calculate more of these formulas for other size step stairs on any size grids. I showed these formulas in Table 2:

Table 2

From Table 1 and Table 2 I can see that the co-efficient of x is always the same for each step size no matter what size grid it is on, and that it is only the end part of the formula (the + something bit) that changes on each size grid. The co-efficient of x is always a triangular number as the stair shapes make a triangle shape (Fig. 2), therefore the formula for finding the coefficient of x will be the same as the formula for finding triangular numbers:  n(n+1)   n being the step size.

Join now!

        2

Fig. 2

For example for a 2-step stair the formula is always 3x plus something, therefore to find the co-efficient of x, in this case 3, I would substitute the step size, in this case 2, into the triangular formula:

2(2+1)           =        4+2        =        6        =        3

              2                  2                2

Therefore this equation works for a 2-step stair as the end result was 3. I then went on to check if this formula worked with other sized stairs. Another example I used was a 3-step stair for which the formula is always 6x plus something. Once again I substituted in the ...

This is a preview of the whole essay