Electrons, photons, and the photo-electric effect.

Authors Avatar

Electrons, photons, and the photo-electric effect

8-6-99

We're now starting to talk about quantum mechanics, the physics of the very small.

Planck's constant

At the end of the 19th century one of the most intriguing puzzles in physics involved the spectrum of radiation emitted by a hot object. Specifically, the emitter was assumed to be a blackbody, a perfect radiator. The hotter a blackbody is, the more the peak in the spectrum of emitted radiation shifts to shorter wavelength. Nobody could explain why there was a peak in the distribution at all, however; the theory at the time predicted that for a blackbody, the intensity of radiation just kept increasing as the wavelength decreased. This was known as the ultraviolet catastrophe, because the theory predicted that an infinite amount of energy was emitted by a radiating object.

Clearly, this prediction was in conflict with the idea of conservation of energy, not to mention being in serious disagreement with experimental observation. No one could account for the discrepancy, however, until Max Planck came up with the idea that a blackbody was made up of a whole bunch of oscillating atoms, and that the energy of each oscillating atom was quantized. That last point is the key : the energy of the atoms could only take on discrete values, and these values depended on the frequency of the oscillation:

Planck's prediction of the energy of an oscillating atom : E = nhf (n = 0, 1, 2, 3 ...)
where f is the frequency, n is an integer, and h is a constant known as Planck's constant. This constant shows up in many different areas of quantum mechanics.

Join now!

The spectra predicted for a radiating blackbody made up of these oscillating atoms agrees very well with experimentally-determined spectra.

Planck's idea of discrete energy levels led Einstein to the idea that electromagnetic waves have a particle nature. When Planck's oscillating atoms lose energy, they can do so only by making a jump down to a lower energy level. The energy lost by the atoms is given off as an electromagnetic wave. Because the energy levels of the oscillating atoms are separated by hf, the energy carried off by the electromagnetic wave must be hf.

The photoelectric effect

...

This is a preview of the whole essay