• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

I am going to investigate what the effect of masses have on the movement of a margarine tub when it's fired by an elastic band.

Extracts from this document...



By Giovanni Berzuini




I am going to investigate what the effect of masses have on the movement of a margarine tub when it’s

fired by an elastic band.


I’m going to measure the distance travelled by a tub, when different weights are put in it. I will have to set

up the experiment in a very accurate way, since to obtain reliable evidence some preliminary precautions will have to be taken. I conducted a trial experiment to get a beginning idea of the proceeding the experiment. I realised that in the planning of my experiment I hadn’t taken account of some factors, which would have made harder the procedure. I realised that when I pulled back the elastic, in order to fire the margarine tub; the stool moved making it hard to fire precisely the tub. This is because the force exercised on the elastic was transferred onto the stool, moving it. I consequently decided that a second agent force had to be exerted to balance out the force exercised to pull the elastic band, so that the stool would remain still. By applying a pressure upon the stool, exercised by my partner, we found out that we could carry out the experiment fairly. Another unexpected factor that we didn’t take account of, was the method in

...read more.


a   net F

When: a= acceleration

         Net f= external force

It now, also seems reasonable the fact that the acceleration, being directly proportional to the force, is inversely proportional to the mass as again Newton’s second law of motion suggests:

A    1/m

Or in equation form:

a=   net F/m

I am able to represent mathematically my reasoning. In order to do this I am going to assign to each variable a random number. If, for example we had to find out the acceleration of an object of mass 2 g.

Which was by an external force of 10 Newton’s, by using the equation above we would figure out the answer is 5.

a= 10/2

a= 5

 If we used an object with a bigger mass e.g. 5, keeping constant the external force exerted we would notice the acceleration has diminished to 2.

a2= 10/5

a2= 2

This proves that acceleration is inversely proportional to mass. Now I will also prove that the acceleration is directly proportional to the external force exerted. I’ll change the external force exerted to 20 N, keeping the mass constant.

a= 10/2                                a2= 20/2

a= 5                                        a2= 10

This proves that with the increase of the external force, keeping the mass constant, the acceleration increases as well. Therefore if the acceleration increases the space covered will be bigger. Therefore if, keeping the external force constant, and increasing the mass, the margarine tub will travel less.

Fair test:

In order to make the experiment a fair test, I will have to keep some factors constant:

  • The elastic band should always be pulled back with the same amount energy, in every repeatings of the experiment. In order to do this the force must be exerted always by the same person. Since with the energy exerted to pull the elastic band also the stool is very likely to move, a balancing force must be applied upon it, in order to keep it still, without altering the results.
  •  We also have to make sure the elastic band doesn’t get denatured, since during the course of the experiment it will be exposed to strong forces for various times.
  • I would also have to be careful no damage gets done on the margarine tub, which could be likely, since its going to carry weights during journey.
  •  I would make sure that the tub is always fired in the same way: directly in contact with the elastic band before the firing, an alteration to this procedure would denature the results.
...read more.



I retain that that I have conducted my experiment in a reasonably fair way. I tried to make my experiment fair in many ways: I attempted to keep constant the external force exercised; in order to do this the same person had to pull back the elastic band in each trial of the experiment. This can assure a fairly accurate outcome of the results, since the amount of energy exercised each time, should have been reasonably constant. Also we used the same firing procedure each time, that as we found out, makes the tub travel further. The accuracy with which we applied this procedure cannot be entirely verified, which will always leave us with a doubt on whether the experiment would have gone differently, but still if the efficiency of our procedure wasn’t exactly the same each time, the results couldn’t have been enormously altered. Overall though, I’m sure we have carried out the experiment in a fair way, because the results give us a clear idea of the pattern of the experiment. There are ways in which I could have improved my experiment: I could have made sure that the force applied to the tub was exactly constant each time, by using appropriate apparatus to fire the elastic band. Unfortunately we do not dispose of such equipment, therefore what we done was the best that could be done. By using more technical equipment I also would have made sure that the technique in which the tub was fired was more efficient. I would change the elastic band after each firing, to make sure it maintains in perfect condition.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. To see how the distance, a weighted margarine tub travels, changes as the distance ...

    35.5 33.4 12cm 40 37.5 45 40.8 Analysis My graph shows me that as the elastic band was pulled back further and further, the further the tub travelled. This can clearly been seen by the way the results curve upwards steeper and steeper.

  2. How Does Changing The Force In An Elastic Band Affect The Distance Travelled By ...

    Detailed Method In my experiment there are a number of factors that will effect my investigation. The variable factors are the force of the band, mass of the tub, surface area of the front of the tub, surface area of the bottom of the tub, floor surface and the tub shape.

  1. In this experiment I aim to find out how the force and mass affect ...

    Again, when using the light gate, the results clearly show that there is a definite increase in speed as the height of the ramp expands. The curve is slightly more prominent, and the peak speed reached in this part of the experiment is almost double of that in the last.

  2. Investigation into the effect of temperature on viscosity

    1 T Graph 1 shows average speed against viscosity. It was exactly the trend suggested when deriving the formula, it shows how an increase in viscosity results in a decrease in average velocity. This supports the theory of temporary induced bonds.

  1. Margarine Tub

    14.5 14.5 13.8 The table above shows my results; I measured to the nearest half centimeter whilst I was collecting my results and worked out the average to the nearest millimetre. As you can see there is an anomaly, (81 cm for 50 grams)

  2. Potential energy in an elastic band that is transformed into kinetic energy and the ...

    8.07 7.3 8.0 7.2 7.50 Work done = Force x Distance 1 = 11.66J 2 = 44.6J 3 = 69.6J 4 = 197.72J 5 = 268J 6 = 388.2J We must consider that friction is working on the band when it hits the floor.

  1. How will changing the distance an elastic band is stretched effect the distance a ...

    This may cause the results to be inaccurate. Lastly we will make sure that we catapult the tub in the same direction as if we change direction this may affect the results due to air resistance. The wind may be blowing in a different way, which will cause inaccurate results.

  2. Investigate how the weight of an object affects the force required to overcome friction.

    It can also be assumed that the static and dynamic friction is directly proportional to the weight as all of my points lie either on or very near the line of best fit, they all show very strong positive correlations.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work