Investigation into factors affecting the speed of a car rolling down a ramp

Authors Avatar
Investigation into factors affecting the speed of a car rolling down a ramp

Introduction

The following investigation that I am going to embark on will involve the transfer of energy from one form to another. Usually when there is a transfer of energy from one component to another, these constituents are parts of machines or mechanisms, which are collectively classed as systems. In any one system there could be just one energy transfer or numerous transfers of energy. However, when we are dealing with systems, we must remember that there is no system that is absolutely perfect, in other words there is no system that can transfer energy 100% efficiently.

There are several different types of energy. One would be elastic energy, which is a form of stored energy, e.g. found in a taut rubber band or spring. Another type would be chemical energy, which we as humans are in contact with everyday - it is the energy we get from in food, the energy used by our muscles and energy in batteries etc. Some systems involving energy transfers are:

* Torches: they use batteries to power them. This power source provides electrical energy from the chemical energy in the batteries. The electrical energy then goes round the circuit powering the bulb and supplying light energy. In addition the bulb also emits heat energy. The torch's main function is to provide light, however, the heat energy also given of is in effect the "leak" in the system that makes it less than 100% efficient. In actual fact the desired light energy that is obtained is only about 5% of the initial chemical energy and the rest is wasted heat energy. So a torch if a very inefficient system. Below is a diagram that shows the transfer of energy in a torch: -

In order to carry out this investigation, I first have to define the terms of the objectives so that an understanding is present and a clear process to acquire the answer can be devised.

Factors affecting speed

Speed is a measure of the rate at which something is moving, so:

Speed = distance travelled ? time taken

Sir Isaac Newton stated in Newton's First Law of Motion that:

If the forces on a mass are balanced (no resultant force), then

* if it is at rest, it stays at rest

* if it is moving, it keeps on moving at a constant speed in straight line

In the case of this coursework, I am going to be investigating the factors that affect the speed of a toy car rolling down a ramp. So I will need to outline which dynamics are going to influence the speed in this situation. Below are some important keywords that will be of significance on this investigation:

Two forms of energy relating directly to the car rolling down the ramp are potential and kinetic energy. Gravitational potential energy (GPE) will be present because the car will be starting above the ground. On Earth the force of gravity pulls down on all objects so the GPE would be the force that moves the car. However, as it rolls down the ramp the GPE will decrease because its height off the ground is decreasing. At the same time, kinetic energy (KE) will be increasing as the car goes down the ramp. At the top when the car is stationary, it will have no kinetic energy because it will not be moving. However, it will gain kinetic energy when it goes down the ramp because it will go from being motionless to moving and increasing in speed. So this system of a toy car rolling down the ramp will

Still on the lines of energy, there is still the problem of energy being lost as the car travels down the ramp. The GPE turns to KE as the car goes down, however, all the energy may not be converted into KE. Some energy may be lost to the atmosphere by heat and sound, although I doubt there will be much lost and so it would not be worthwhile including it in the investigation as a primary consideration. The car will probably accelerate as it goes down the ramp so the length of the ramp will have an effect on the speed of the car, that is, if the car does not reach its top speed by the time it has gone down the ramp. More importantly is the influence of the height of the ramp. GPE = mass x gravity x height so if the height of the ramp is increased then so will the GPE. This in turn will affect the KE.

Another main factor is the friction that will occur when the car rolls down the ramp. If there was no air resistance or friction then all objects would accelerate downwards at the same rate. This can be proved by a famous experiment by Galileo, which he is supposed to have done from the leaning tower of Pisa. He dropped a heavy stone and a light stone simultaneously and they both accelerated at the same rate and landed at the same time. However, the car will have friction acting on it - between the wheels of the car and the ramp. The car will only be able to move if the force pushing it overcomes the friction acting against it. This means that some of the GPE will be lost towards countering the friction and so the KE will be reduced as friction increases. Since friction is acting on the car then the mass of the car will have an effect too. Increasing the mass of the car would increase the GPE, however, the increased mass at the same time would also increase friction since the pressure between the car wheels and the ramp will be greater. Since these two opposite forces are increasing all at once they may even cancel each other out, therefore the effect of the mass on energy lost being neutralised, but still increasing the net speed of the car.
Join now!


What I am Going To Do

Out of all the factors that I have discussed regarding their effect on the speed of the car rolling down the ramp I will investigate the following:

* Height of Ramp:

The height of the ramp will directly affect the speed and kinetic energy because as the height is increased, so the GPE of the car increases and the force powering the car increases. Raising one end of the ramp to the desired height can easily alter the height of the ramp and the height that the car starts ...

This is a preview of the whole essay