Investigation into the effect of varying concentrations of potassium nitrate solution, on the germination and subsequent root radicle growth of cress seeds.

Authors Avatar

Investigation into the effect of varying concentrations of potassium nitrate solution, on the germination and subsequent root radicle growth of cress seeds.

 

The following investigation is based on seed germination and growth. In this particular study seeds will be subjected to a variety of different solution concentrations, the aim being to find out how this affects their growth and germination.

Introduction

The germination of seeds is dependent on the presence of three things; a sufficient water supply, a suitable temperature and an appropriate partial pressure of oxygen. Germination also relies on the maturity of the embryo as well as the presence of the three factors listed above.

The picture above shows a seed in trans-section. The embryo consists of a shoot (plumule,) a root (radicle) and 1 or 2 seed leaves. The seed’s food store is either contained in the endosperm (tissues surrounding embryo) or within the seed leaves. The role of the testa is to enclose and protect the seed’s contents.

Water, which is absorbed through the microphyle and testa, is essential for activating the enzymes that catalyse the biochemical reactions of germination. When water is absorbed it stimulates the production of gibberelin (a plant growth regulator, synthesised in most parts of the plant.) The gibberelin, in turn, stimulates the synthesis of amylase by the cells in the aleurone layer. The amylase hydrolyses the starch molecules in the endosperm, converting them to soluble maltose molecules. Finally, the maltose is converted into glucose, providing a source of carbohydrate for respiration. Gibberellin causes this effect by regulating the genes that are involved in the synthesis of amylase.

The role of temperature in germination is to provide the optimum conditions for the enzymes involved in food mobilisation. Enzymes are biological catalysts, meaning they speed up a chemical reaction whilst remaining unchanged themselves at the end of the reaction. They possess a special feature called an active site (usually a cleft or depression.) Substrate molecules can bind, temporarily, to this active site and, whilst binded, the enzyme changes the structure of the substrate. Enzymes work by providing an alternative, lower energy route along which a reaction can take place. This lowering of the activation energy increases the number of molecules which have enough energy to react. Therefore, more molecules react and more products can be formed.

The diagram above shows the effect of temperature on an enzyme-controlled reaction. It demonstrates the importance of temperature in seed germination.  At very low temperatures the enzyme reactions inside the seed can take place only very slowly. This is because molecules have very little energy and so move very slowly. Collisions between substrates and enzymes are infrequent and, even when they do collide they may not possess enough energy to react. At these low temperatures the seed is unlikely to be able to germinate as the rate of its biochemical reactions, such as food mobilisation, will be too slow.

Join now!

As the temperature rises the enzymes and substrates move faster, collisions become increasingly frequent and, as a result, the rate of germination steadily rises as the temperature rises.

However, above a certain temperature the enzymes vibrate so energetically that some of the bonds holding the enzyme in its precise shape begin to break. The substrate can no longer fit into the enzymes active site so no reaction can occur. The enzyme is said to be denatured. If a seed were subjected to such temperatures it would be unable to survive as none of the necessary biochemical reactions ...

This is a preview of the whole essay