• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Relative atomic Mass of Lithium

Extracts from this document...


Determination of the relative atomic mass of Lithium Evaluation I was given a task in which I was had to investigate and determine the relative atomic mass of Lithium. I was given the opportunity to use two different methods of which I could use to get my final result. The practical takes a vast amount of concentration and there are a number of measurement errors that can occur while carrying out the practical. Problems that affected the measurement such as; the equipment being used, not being 100% accurate when measuring out the substances being used, which usually gave an outcome of the readings given being slightly higher or slightly lower than the amount needed. This is evident in the use of the pipette, which expands and contracts due to the temperature and surrounding, so to get what is seen as an accurate reading would be nearly impossible. This degree of uncertainty is referred to as the tolerance. The tolerance could be a problem when the measurements are carried forward to the calculations, for example; when calculating the number of moles of Lithium Hydroxide in the second method. ...read more.


Uncertainty (%) = Multiplied by 100 Measuring Cylinder Uncertainty (%) = Multiplied by 100 Burette Uncertainty (%) = Multiplied by 100 Balance Uncertainty (%) = Multiplied by 100 From my results it is clear that the important area of measurement source is the balance, this is due to the fact that it has the highest uncertainty. From my calculations I also saw that even though the tolerance of the measuring cylinder is greater to that of the pipette and the percentage uncertainty is lower which is due to the fact that the volume that has been measured in the measuring cylinder is larger than the pipette, meaning the measurement error produced by the pipette is more significant. There are two ways in which you can minimise the measurement errors; one being to measure a larger amount, but by doing this I may need to alter my method, which can be done by either using alternative equipment such as a larger burette or increased concentration of Lithium Hydroxide solution. Another way can be to attempt to use a piece of equipment with a lower tolerance value, but this is not always possible. ...read more.


To prevent this from happening I could have used an inert solvent to wash all the oil off the Lithium providing me with all the correct results. After carrying out and completing my experiment, and going through two methods in which to get the result of my task, I can see why it is essential to have more than one method, as one method will not show the mistakes and effectiveness another method will. I feel that the most effective method was method 2. This is because it was most effective in finding the relative atomic mass of lithium. I feel this is because the most inaccurate piece of equipment, which is the balance, was not included in this method which would have gave a better chance of getting accurate results. Another reason is that within this method the Burette was used which had the most accurate functions to get the most reliable results, which put this method at a steady advantage as the least accurate apparatus was excluded and the most accurate was included. ?? ?? ?? ?? Tino Chingwaru ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. How much Iron (II) in 100 grams of Spinach Oleracea?

    This would ensure that the solutions were at the required temperature for the titrations. Experiment Five - How much Iron (II) can be extracted from 15 grams of Spinach Oleracea when boiled in Sulphuric Acid (aq) As this was a preliminary experiment to work out the volume of spinach extract

  2. to determine the relative atomic mass of lithium. We will be doing this via ...

    This is calculated by the percentage error as below: Percentage error = Absolute error x 100 Value of quantity The main sources of error in procedure and in measurements are random errors and systematic errors. These are: * Random errors are associated with most measurements.

  1. Determine the relative atomic mass of lithium.

    Like sodium hydroxide and potassium hydroxide. If inhalation of lithium hydroxide occurs, remove source of contamination or move victim to fresh air and seek medical attention. Lithium hydroxide can be very irritating to the skin. Solid lithium hydroxide or concentrated solutions may cause severe tissue damage.

  2. Determination of the Relative Atomic mass of Lithium

    This loss of gas could have caused further experimental errors, however I do not think the gas loss could have caused as great an inaccuracy compared to the inaccuracies caused when weighing out the lithium. Method 2 Sources of Error: When using the burette we were subject to a measuring

  1. Investigation to determine the relative atomic mass of lithium

    I started to release the HCl down drop by drop for more accurate results. Once this is all done I repeated the results twice more (for accuracy) and remembering to swirl it after each drop I will repeat this experiment until I am confident that my results prove to be correct.

  2. Determination of the relative atomic mass of lithium.

    I can test the accuracy by calculating the percentage of accuracy for each experiment. This is done by dividing the calculated result of the relative atomic mass by the actual atomic mass (6.9) of lithium, then multiplying this by 100: Method 1: 6.64 x 100 = 96.2 % accurate 6.9

  1. Determination of the relative atomic mass of Lithium

    two titres were the same I didn't need to take an average, so I found the titre to be 38.6. Using these readings the aim was to do the following: * Calculate the number of moles of HCl used in the titration.

  2. Determination of the relative atomic mass of lithium.

    The mass I have used is from the original mass of my lithium. This is because I need to figures from the previous stages. The number of moles (0.01866) was derived from the answer to part (2) of my analysis.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work