• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The analysis and evaluation of Neutralisation.

Extracts from this document...

Introduction

The analysis and evaluation of Neutralisation An example of neutralisation is this: Acid or Alkali + Base Salt + Water + Hydrogen This investigation will investigate the reaction of hydrochloric acid and sodium hydroxide where these two liquid compounds neutralise each other. We will be monitoring the temperature of the liquids as more of the hydrochloric acid (HCL) is added. Sodium Hydroxide + Hydrochloric acid Sodium Chloride + water NaOH + HCL NaCl + H2O I predict that this reaction will be exothermic as this reaction creates bonds, which will give out heat. The reaction creates bonds between the hydrogen and the hydroxide ions, ie another Hydrogen - Oxygen bond is being formed. H+ + OH - H2O H+ + O - H O H H This formula is called neutralisation. As shown when the hydrogen and hydroxide react together an extra bond is created between the Hydroxide and hydrogen to form water (H2O). The results collected are shown in the table below. We can find out the total amount of energy released in this reaction. This is done by using this equation. 4.2Joules of energy will rise the temperature of 1g of water by 1oC In my experiment there was an temperature increase of 5.1oC. ...read more.

Middle

Another way to reduce this error would to use many different conicals with set amounts in, ie one flask for every reading. This would prove impractical in the lab as there are a limited supply. I think by conducting the experiment this way a higher amount of energy will have been shown to be released. in water. H placed in water. A sodium Hydroxide molecule (NaOH) will release one Na+ and one (OH-) ion when placed in water. This means that one molecule of NaOH and one molecule of of HCl will neutralize each other and produce H20 and a neutral salt Sodium Chloride (NaCl). This means that that to neutralize HCl and NaOH at the same concentration, you need equal amounts of each. The reaction between acid and alkali is exothermic and produces heat. The heat is generated till the reaction takes place, which will occur till equal amounts of acid and alkali are mixed. On adding more acid than the equal amount of the alkali will have the effect of cooling the mixture. In this case the temperature will continue to rise for a longer period before the mixture starts to cooling. On the other hand sulphuric acid molecule (H2SO4) ...read more.

Conclusion

The temperature of the mixture rises as the reaction continues. Equal amounts of acid and alkali are required to form a neutral solution as both hydrochloric acid and Sodium hydroxide have equal number of (H+) ions and (OH-) ions respectively. When the solution is neutral, the reaction will cease and from that point onwards the temperature will start to decrease. The drop in temperature is caused by adding a cool acid to the hot solution. We predict the same results when hydrochloric acid is added to the control alkali, ammonium hydroxide. The equation for the reaction is as follows: HCl + NH30H ---------- H20 + NH3Cl Sulphuric Acid As sulphuric acid is added to sodium hydroxide, the pH of the alkali will decrease as the acid is gradually added to it. You need two molecules of NaOH to neutralise one molecule of H2SO4 and produce the neutral salt Sodium Sulphate Na2SO4. If the same concentration of sulphuric acid is added to twice the volume of sodium hydroxide, the resulting solution is found to have a pH of 7 as the alkali has been neutralized and a neutral solution formed. H2SO4 + 2Na0H &nbs ... To calculate the energy released we have to use the formula: Energy change = Temperature change � total volume � specific heat capacity Concentration of Acid (M) Average Temperature Change (�C) ... Simon Rhodes 11C ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Investigate the effect of changing the concentration of sodium hydroxide (alkali) on the volume ...

    4 star(s)

    ions (H).Because acids are chemical opposites of alkalis, when added together in correct amounts they can 'cancel' each other out, thus neutralisation occurs. Dilute sodium hydroxide The alkali to be used in the experiment. Contains hydroxide ions which will be neutralised by the acid.

  2. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    When a neutral substance is formed water and salt are always two of the resulting products. The type of salt which is formed is derived from the type of acid used e.g. sulphide makes sulphate salts, nitrogen makes nitrate salts, and chloride makes chlorine salts.

  1. Investigating Neutralisation.

    4.0 21.0 21.0 21.0 0.4 21.0 24.0 3.0 Average Results Table Concentration of Acid (M) Results 1 Temperature Rise (�c) Results 2 Temperature Rise (�c) Results 3 Temperature Rise (�c) Average Temperature Rise (�c) 2.0 12.0 13.0 12.0 12.0 1.6 7.0 8.0 10.0 9.0 1.0 4.0 6.0 7.0 6.0 0.6

  2. Investigation to find out the factors affecting heat of neutralisation, and then choosing one ...

    * Also when measuring chemicals I should use a pipette for accuracy- labelled for acid + alkali to avoid contamination. * My outcome variable will be the maximum temperature reached. * I have decided to do each experiment 3 times to make sure that any anomalous or inaccurate results will

  1. To investigate the effect of concentration on the temperature rise, heat evolved and heat ...

    M NaOH Moles of NaOH = c x v = 3 M x 0.025 dm3 = 0.075 moles Heat evolved = moles x 57 kJ = 0.075 x 57 kJ = 4275 J Temperature change = Q / (m x c)

  2. Energy Change Associated With Neutralisation

    * Equipment I will use equipment that is suitable for my experiments and that I can use to give me the most accurate measurements. As my variable will be the strength of my acid, the amount of my alkali will stay the same.

  1. Investigate the effect that concentration has on a reaction on these factors: Temperature rise, ...

    We insert the thermometer into this mixture of acid and alkali and then measure the temperature, as the neutralization is taking place. The process consists of letting 5cm3 of acid go off into the cup at certain intervals, hence at each time noting down the temperature change value.

  2. Investigation of the energy change accompanying a neutralisation reaction

    Make sure exactly 20ml of each chemical is used in each experiment. ? Make sure the pH is chosen precisely when recording it. In case of doubt, use a second indicator, eg. Phenolthaline. ? When swirling the acid and alkali together in a conical flask, do not put your hand around it.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work