• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# The Determination of an Equilibrium Constant.

Extracts from this document...

Introduction

The Determination of an Equilibrium Constant Introduction: PARTI: Theory Many chemical reactions are irreversible reactions, for example, if magnesium is burnt in air a brilliant white flame is observed as the white powdery solid magnesium oxide is formed: 2Mg(s) + O2(g) 2MgO(s) We also say that the reaction goes to completion (as Fig. 1 shows), and for practical purpose it is. Some apparently irreversible reactions are reversible to such a small extent that we can ignore it. Concentration Reaction stops when concentration reaches zero Time Fig. 1 A reversible reaction is one that can take place in both directions and so is incomplete (thus this symbol is used). Take the reaction between hydrogen and iodine for example: H2(g) + I2(g) 2HI(g) 0.5 moles of hydrogen gas and 0.5 moles of iodine gas react in sealed glass bulbs and the temperature is kept constant at 445 �C. One may assume that there would be 0.1 mole of hydrogen iodide present when the reaction has completed but this is not the case. After 84 minutes, there are only 0.78 moles of hydrogen iodide present. No matter how much time elapsed after 84 minutes, the amounts of all three chemicals were identical: the reaction has reached its equilibrium position (Fig. 2). Equilibrium reached: no further changes Concentration Concentration of product Concentration of reactant Time Fig. 2 However, it does not mean that the reaction has stopped. In fact both the forward and the reverse reactions still continue, which is why we use the term dynamic equilibrium: When a reaction is in dynamic equilibrium, the forward and reverse reactions are occurring at the same rate (Fig. 3). Forward rate Equilibrium reached Rate of reaction Back rate Time Fig. 3 Equilibrium is maintained only in a closed system, where there is no exchange with the surroundings. There is therefore no loss of reactant or product materials to affect their equilibrium concentrations. ...read more.

Middle

+ 0.4675 = 1.8565 mole 4 [CH3COOC2H5] = 1.2515 / 0.25 mole dm-3 [H2O] = 1.8565 / 0.25 mole dm-3 [CH3COOH] = 0.845 / 0.25 mole dm-3 [C2H5OH] = 0.8205 / 0.25 mole dm-3 ?Kc1 = [CH3COOC2H5] * [H2O] / [CH3COOH] * [C2H5OH] = (1.2515/0.25) * (1.8565/0.25) / (0.845/0.25) * (0.8205/0.25) =1.2515 * 1.8565 / 0.845 * 0.8205 = 3.35 Mixture 2: 1 * Mass of CH3COOH = 1.05 * 75 = 78.75 g Molecular mass of CH3COOH = 12 + 3 +12 + 32 + 1 = 60 g/mol Number of moles of CH3COOH = 78.75 / 60 = 1.3125 mole * Mass of C2H5OH = 0.79 * 75 = 59.25 g Molecular mass of C2H5OH = 24 + 5 + 16 + 1 = 46 g/mol Number of moles of C2H5OH = 59.25 / 46 = 1.288 mole * Mass of CH3COOC2H5 = 0 g Number of moles of CH3COOC2H5 = 0 mole * Mass of H2O = 1 * 100= 100 g Molecular mass of H2O = 18 g/mol Number of moles of H2O = 100 / 18 = 5.556 mole 2 Volume of NaOH used in titration is 17.05 cm3 Number of moles of OH- used = 0.2 / 1000 * 17.05 = 3.4 * 10-3 mole ?1 mole of H+ react with I mole of OH- ?There are 3.4 * 10-3 * 250 = 0.85 mole H+ in the 250 cm3 mixture 3 Number of moles of HCl in the mixture = 1 /1000 * 25 = 0.025 mole Number of moles of CH3COOH at equilibrium = 0.85 - 0.025 = 0.825 mole Number of moles of CH3COOH reacted = 1.3125 - 0.825 = 0.4875 mole According to the equation CH3COOH + C2H5OH CH3COOC2H5 + H2O The amount of C2H5OH reacted equals the amount of CH3COOH reacted ?Number of moles of C2H5OH at equilibrium = 1.288 - 0.4875 = 0.8005 mole The amount of CH3COOC2H5 (H2O) ...read more.

Conclusion

It has led to errors. However the experiment can be improved if the following actions can be taken into account: * Find out the actual density of the hydrochloric acid. It can be done easily by dividing the mass of a fixed amount of acid by its volume; * A more closed container is recommended to keep the mixtures, e.g. a vacuumed cylinder. The exchange of materials between the mixture and the surroundings can therefore be minimised; * A PH metre can be used during titration so the equivalence point can be detected much more accurately than simply being judged by eyes, which means the accuracy of the titration can be greatly improved; * Ensure that the mixtures were not subjected to any change of temperature and/or pressure which may have an effect on the position of the equilibrium. This can be achieved by using more sophisticated measuring equipments; * Repeat the titration several times and find out the average reading. Therefore mistakes made by one single titration can be minimised. Finally, we do not know whether seven days have been long enough for the mixtures to reach equilibrium. If they were not long enough then no matter how accurate we were we still cannot find the actual value of Kc. Therefore it is essential to: Divide each mixture into several samples for separate analyses at different times, say we can divide mixture 1 into four samples and label them one to four. Sample one can be analysed after six days; sample two after eight days; sample three after ten days and sample four after twelve days. Then different Kc1 values can be compared. Whenever Kc1 becomes constant we know that equilibrium has been achieved. Repeat this procedure with mixtures 2, 3 and 4 so an actual actual Kc2, Kc3 and Kc4 values can be obtained, from which we can calculate the actual Kc value for the equilibrium. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Aqueous Chemistry essays

1. ## Determine the concentration or molarity of Ethanoic acid (CH3COOH) in two types of commercial ...

The values collected will be shown in a table and an average is shown in this table for the three values representing the number of centimetres cubed (NOT the rough) of sodium hydroxide added to neutralise the diluted vinegar for both vinegars to two decimal places.

2. ## How much Iron (II) in 100 grams of Spinach Oleracea?

0.0000525 mol dm-3 x 5 = 0.0000875 mol dm-3 3 Now that I know the mols of Iron (II) present in 5 cm3 of spinach extract solution I can use this to work out the moles of Iron (II) present in 100 cm3 of spinach extract solution.

1. ## Determine the enthalpy of neutralization for HCl +NaOH, CH3COOH +NaOH, and 1/2H2SO4 +NaOH.

CH3COOH 25 25 29.5 35.5 Heat absorbed by water= mass of water x sp. Heat capacity of water x change in temperature For these reactions it is assumed that the acids have the same density and specific heat capacity as that of water.

2. ## Separating the compenents of a mixture

% Loss of mixture 10.01 219.05 216.75 2.3 9.00 1.85 1.28 7.15 9.45 5.59 To calculate the mass of salt, the following equation was used: Evaporating basin and Salt - Evaporating basin = Salt To calculate the mass of sand, the following equation was used: Filter paper and Sand -

1. ## The aim of this experiment is to answer the following question: What is the ...

* Sodium Hydroxide Solution (unknown concentration)- 150ml approx. * Sulphuric acid (unknown concentration)- 150ml approx. * Ethanol (95% concentration with 5% water)-500ml approx. * Ethanoic Acid (Glacial Acetic Acid 100%)-500ml approx. * Methyl Orange * Phenolphthalein The Hydrochloric acid I am using is corrosive, so if it comes into contact with skin it will burn.

2. ## EQ3 Determination of the Equilibrium Constant for Esterification -

The refluxing process was repeated until the two titrations results�' different was within 0.2 cm3. Results and Calculations Volume of ethanoic acid used: 0.25 x 60.05 / 1.05 = 14.3 cm3 Volume of propan-1-ol used: 0.25 x 60.1 / 0.8 = 18.8 cm3 1st titration 2ndtitration 3rd titration 4th titration Initial volume of NaOH (cm3)

1. ## In order for me to obtain the value of 'n' in the formula: ...

* Rough titration After all the equipment is cleaned I will do a rough titration, this will give me a quick look as to how much solution will be needed for the reaction to occur. To do this: 1. I will carefully fill the pipette with the pipette filler on

2. ## You are provided with a sample of vinegar which contains approximately 5g of ethanoic ...

250cm� volumetric flask * Distilled water * Vinegar SAFETY CONSIDERATIONS: * Vinegar is a dilute aqueous solution of Acetic Acid. The pure acid is hazardous, yet when diluted it is not very dangerous. It has a very strong smell so use it in a ventilated environment. • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 