• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Pendulum

Extracts from this document...

Introduction

ThePendulumCoursework

Planning Section

Aim: The aim of this experiment is to find out if a certain variable effects the period of a pendulum. The variable we will be testing in this project is the length of the string.

Prediction: I predict that the longer the piece of string, the longer it will take the pendulum to complete one period. I also predict as the length of the string goes up by 10cm, the period will increase by roughly 0.15 seconds.

Apparatus: -Piece of string (longer than 95cm)

             To attach and swing the weight ball off.

  -Ruler

                To measure the piece of string.

 -Protractor

          To measure the angle between the string and the floor so

                         It is the same every time.            

                         -Stop watch

To measure how long the period is

     -Pencil/Pen

To record our results

                         -Weight ball (40g)

To attach and hang on the end of the string to weigh it

                          Down and to make it into a pendulum.

                         -Clamp

To attach the pendulum 2 the table so it has room to

                          Swing above the floor.

                         -Clamp attachment fitting

To attach the string to the clamp.

Method:

  1. Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in fives i.e. 5, 10, 15 etc…                                                                

...read more.

Middle

image01.png

Preliminary Trial

Length (cm)

Trial 1

5

0.91

10

0.95

15

1.07

20

1.18

25

1.20

30

1.22

35

1.42

40

1.47

45

1.58

50

1.45

These results aren’t very accurate and don’t really follow a certain pattern. Also, I don’t think they cover a big enough range so we don’t really get a chance to see how length effects the pendulum later on when the string is longer. Therefore, We are going to change the difference between each length from 5cm –10cm.

This is the new Method:

1) Firstly, we have to determine, how many lengths we ant to compare, and also (in cm) how long each piece of string is.

We have decided to go up in tens i.e. 5, 15, 25 etc…                                                            

2) Then we have to draw up a table o record all f our results.

3) Next we have to collect all our apparatus.

4) Firstly, we will measure a piece of string to the length required, plus a bit for excess to tie around the weight ball etc…

5) We then will set up our clamp and attach the string to the clamp attachment and in turn, attach the weight ball to the string.

6) After all is set up, we will need to wind up the string around the clamp to the lowest measurement ready to begin the experiment. (we will measure it with a ruler)

7)

...read more.

Conclusion

This shows good and accurate timings, which is very good n the fact we’re trying to compare the length of string and the how it affects the time it takes the pendulum to complete one period.

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right.

t² = (4π²/g)L.

39.5/39.5=1

1 times 5 = 5

Therefore should be at point 5 (0.5) on the graph.

Therefore our result is inaccurate.

However, it does relate to my background research because it said that length would be the only variable able to change the length of the period. Also that the longer the string the longer it would take to complete a period. This means it does link closely to the background research, just not extremely accurately. The main theory does.

Conclusion

The rule for this graph is, as the length of string increases, the time it takes the pendulum to complete period increases at the same time. My graph clearly shows this as the line of best fit goes up diagonally right. In my prediction I said that it goes up by roughly 0.15 in every 10cm but I think its now more closer to 0.1 seconds in every 10 cm.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Additional Science - What affects the period of a pendulum?

    3 star(s)

    = 5(52-1) => 120 = 1 - (0/120) = 1 <--- As the final answer is 1; this means that there is a strong correlation. For this preliminary I chose to use the iron ball bearing, weighing 39.58g. The results shown do show that as the angle decreases, the time

  2. The Flywheel as an Alternative Energy Storage Device for Electric Vehicles (EV): Problems Associated ...

    Flywheel could be made from high strength and low density composite materials such as carbon fiber, and Kevlar, and can store great amount of energy without difficulty. Some problems still exists, however, such as the reliability of the flywheel from fatigue failure, the unpredictability of the deformations of flywheel material

  1. science pendulum experiment

    Therefore the factor I have decided to test is the length of string. Fair Test In order for my experiment to be worthwhile, it needs to be made a fair test. I will ensure this by: * Selecting a constant angle to swing the pendulum from.

  2. Investigating the amazingness of theBouncing Ball!

    Here I'll be testing the difference of the rubber ball at around -15�C to 60�C. The rubber ball was cooled to -15�c using a freezer, a thermometer measuring the temp to the 0.1�c accuracy so a � 0.05�c error with range of -20�c to 110�c.

  1. An Investigation to discover whether the string length of a pendulum affects the pendulum ...

    will be shorter than when it was longer. I think that this will happen because in the formula T=2?V(L /G) length is divided by gravity. This means that changing the length will change the time. I also predict that the length of the string will be directly proportional to the square of the time taken to do one complete swing.

  2. What affects the time period of a pendulum.

    What will affect the accuracy of results? Fair Testing There are a few invariables mainly caused by human error that we should consider before conducting the experiment. These include:- Clamp, string, measuring equipment, stopwatch, person who does all the measuring and timing, weights, position where knot is tied, angle where it is released (amplitude).

  1. Designing a children's slide, making it exciting for the children whilst exercising safety.

    end it will mean a change in acceleration, where there will be a loss in speed 4) Assumption: the child sits at top of the slide thus having a fixed initial velocity of 0i+ 0j. Initial velocity will vary from child to child as they approach the slide, this will

  2. What effects the period of a pendulum?

    than its opposing force and therefore the pendulum eventually slows down to a stop. Prediction For this experiment I predict that the length of the pendulum will have a great affect on the length of time for a swing, in the way that the longer the pendulum is the longer the time for one swing.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work