• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# What affects the time period of a pendulum.

Extracts from this document...

Introduction

What affects the time period of a pendulum

Plan

I have been asked to investigate what affects the time period of 1 oscillation of a pendulum.

Definitions: Oscillation: Repeated motion of pendulum (to and for)
Period (T): Time taken for one full oscillation

Prediction

I predict that the longer the length of string the longer it will take the pendulum to complete one period. This is because the length of the arc, the pendulum is traveling along is greater, but the gravitational acceleration will remain the same. This prediction is also proved by the formula Here if the length of the string is increased (L) then that side of the equation becomes larger because the size of the fraction is increasing and because one side of the equation is increasing so must the other to remain equal so T will also increase.

Hypothesis

What a pendulum is:

A pendulum is a body suspended by a fixed point so it can swing back and forth under the influence of gravity. Pendulums are frequently used in clocks because the interval of time for each complete oscillation, called the period, is constant.

The GPE (gravitational potential energy) gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing.

Middle

To make sure our results are accurate we need to keep everything but the variable constant. Below are some simple guidelines to ensure that our testing is fair.

## Solution

Clamp Stand

Could rock

Place a heavy mass on the base to prevent this.

Mass of the bob (see note below)

If we use different bobs there mass could be different.

Make sure we use the same bob

Angle

Angle could be different due to human error

Make sure we measure the angle accurately

Gravity

If we move to another area of the world, the effects of gravity will be slightly different

Stay in the same area of the earth as much as possible.

Human error

Human error between releasing the bob and starting the stopwatch.

Make sure the same person does each task every time, use a standard pre-release method, i.e. 3,2,1, go.  We should also let the pendulum swing for ten periods and then divide by 10 to reduce the effect of human error.

Note: Although during my research I ascertained that the mass of the bob does not effect the period of the pendulum, I should still keep this constant, as I should only have one variable in my experiment.

Note: The friction on the string caused by the air will affect the results. Ideally, this experiment would be conducted in a vacuum. However, we have no equipment in school that we could use to achieve this.

Conclusion

However with the small bob with a short string it took 0.929 seconds compared to the long string which took 1.207 seconds. So obviously the length of the string affects the time. The smaller the string the bob is attached to the smaller the time it takes for a swing.

We also investigated whether the angle the ball is dropped from affects the time. With a big angle it took 12.85 secs so their was no big difference.

My prediction, based on the preliminary work is that the smaller the string the bob is attached to the smaller the time it takes for one swing. In contrast, the larger the string is, the longer the bob takes for one oscillation.

Were using a retort stand and clamp to swing the pendulum from. We will measure time for 10 ,20 ,30 ,40 , 50, 60, 70, 80, 90 7 100 cm’s length strings.

We will get 3 measurements and then average the results.

For each result we will let the pendulum swing for 10 periods and then average to eliminate human error as much as possible.

The angle will be same that we drop it from, also the weight of the bob will be the same. Were using a protractor to keep the angle the same.

We will put weights on the stand to make the results accurate.

We will not be going over 15 for the angle.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Forces and Motion essays

1.  ## Additional Science - What affects the period of a pendulum?

3 star(s)

= 3(32-1) => 24 = 1 - (0/24) = 1 <--- As the final answer is 1; this means that there is a strong correlation. From this experiment, I found that the shorter the string the faster it took the ball bearing to complete one full oscillation.

2.  ## length of a simple pendulum affects the time

4 star(s)

It could either be stationary, or passing through the middle of the swing. force due to gravity = weight of bob = mg m = mass of bob g = gravitational field strength g = 10 N/kg at the Earth's surface The two forces are not in opposite directions.

1.  3 star(s)

The GPS may be with a tube which may detect alcohol and drugs to the police. Nowadays there are cars with anti theft system, which are completely immobilized when the owner sends a code by mobile phone. In future it will be possible the police to use this system, when the car is doing something against the law.

2. ## Determining the acceleration due to gravity by using simple pendulum.

Connect the release mechanism and the pad base on the floor with a timer. 3) Place the both the releaser and the receiver of the ball at a desirable length and make sure the time on the stopwatch or a digital stopwatch (or any source of a timer)

1. ## Period of Oscillation of a Simple Pendulum

This factor may have contributed to some loss of energy in the pendulum and therefore some of the speed would had been lost. This could be solved by a pendulum which does not bend, it cannot 'flop' whilst it swings.

2. ## To investigate the time taken for the pendulum to oscillate for a time period.

The pendulum will be left to oscillate 10 times before stopping the watch. This is because the reactions of the student using the stopwatch are about 0.25s for stopping and starting. So if one oscillation took 1 second the student would have around 1.5s on the stopwatch.

1. ## The determination of the acceleration due to gravity at the surface of the earth, ...

Another aspect of the experiment where error may occur is when starting and stopping the stop watch, as reaction time of the person stopping is included in the final time. However, the reaction time is not a significant value which needs to be considered because it is likely that my

2. ## In this experiment I aim to find out how the force and mass affect ...

stage, it seems sensible to say that a larger mass will result in more kinetic energy, and hence a faster velocity. But lets look at the formula for kinetic energy. Mgh = 1/2mv2 Now we can see here that although a larger mass will indeed result in a larger amount • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 