DNA; Past, Present, and Future

Authors Avatar

DNA; Past, Present, and Future

DNA, or deoxyribonucleic acid, is a nucleic acid containing genetic information and instruction that is essential in the growth and operation of all living organisms (except certain viruses). Due the fact that DNA’s main role is the long-term preservation of information, it is frequently compared to a set of blueprints; somewhat resembling a recipe or code. DNA is composed of segments called genes that contain the process directions needed to build other cellular components such as RNA and proteins. Segments aren’t the only sequences that constitute DNA; others are used for structural purposes or regulation of the use of the stored information. DNA comprises of two long polymers called nucleotides, which consist of backbones constructed by sugars and phosphate groups held together by ester bonds. As the two strands run in opposite directions in an anti-parallel manner, they form a double helix. The four types of molecules attached to each sugar as called adenine, guanine, thymine, and cytosine. These bases create the sequences of information that are read by genetic code by a process called transcription; copying expanses of DNA into the RNA. Chromosomes are long, organized DNA structures which are duplicated during cell division; DNA replication. Although both eukaryotes and prokaryotes store DNA, eukaryotes do so in the nucleus (with the exception of mitochondria and chloroplasts which have their own DNA) and prokaryotes do so in the cytoplasm. Chromatin proteins in the chromosomes compress and organize DNA, thus maneuvering the interactions between DNA and other proteins.

DNA was discovered for the first time in 1869, by Swiss physician Friedrich Miescher. He discovered a microscopic substance in the cellular nuclei of the pus of discarded surgical bandages, which he named “nuclein”. A short while later, in 1919, Phoebus Levene discovered the general structure of DNA; the sugar and phosphate base. Although he thought that DNA consisted of a string of nucleotides through the phosphate groups, he was incorrect in suggesting that the chain was short and the bases repetitive in a fixed manner. This error was only rectified in 1937, when William Astbury brought forth the first X-ray diffraction patterns showing DNA’s regular structure. Additionally, in 1928:

Frederick Griffith discovered that traits of the “smooth” form of the Pneumococcus could be transferred to the “rough” form of the same bacteria by mixing killed “smooth” bacteria with the live “rough” form. This system provided the first clear suggestion that DNA carries genetic information – the Avery-MacLeod-McCarty experiment – when Oswald Avery, along with coworkers Colin MacLeod and Maclyn McCarty, identified DNA as the transforming principle in 1943. DNA’s role in heredity was confirmed in 1952, when Alfred Hershey and Martha Chase in the Hershey-Chase experiment showed that DNA is the genetic material of the T2 phage.

As a phage is a virus that uses a bacterium’s machinery and energy to produce more phage until the bacterium is destroyed and phage is released to invade surrounding bacteria, it is obvious that it uses self-replication, and thus, passes on traits. If DNA is contained in the genetic material of phage, it is definitely a hereditary tool. Hershey and Chase’s findings was the first major turning point in the history of DNA. A second one was when, in 1953, James Watson and Francis Crick suggested the now-used double-helix model of DNA structure. Their proposal was based on an X-ray diffraction image taken by Rosalind Franklin in May 1952, and on raw information about DNA bases being paired from Erwin Chargaff, whose rules played a significant role in the establishment of double-helix configuration. Furthermore, Crick articulated the relationship between DNA, RNA, and proteins in 1957, thus laying out the “Central Dogma of molecular biology”. Finally, in 1958, the Meselson-Stahl experiment confirmed DNA’s replication mechanisms, and additional work by Crick and his coworkers illustrated that genetic code was a series of non-overlapping triplets of bases, also known as codons. Using this work, Har Govind Khorana, Robert W. Holley, and Marshall Nirenburg deciphered the genetic code.  To sum it up, Crick and Watson’s work was the final catalyst which represented the birth of molecular biology, and introduced versatile and useful usages of DNA.

Join now!

        Without the significant works of Miescher, Astbury, Hershey, Chase, Avery, Macleod, McCarty, Crick, Watson, Khorana, Holley, and Nirenburg, DNA could never be the powerful tool it is today. These people led the way to modern DNA analysis. As DNA was identified as a container of genetic information, nowadays, it is used to identify, screen, detect, develop, prevent, and treat. In short, it has furthered science significantly. In today’s day and age, DNA analysis and the information gathered from it is routinely used in forensic investigations, the field of biosecurity, postal services, environment and food testing, biochemical engineering, the study of ...

This is a preview of the whole essay