Osmosis Lab

Examination of how the concentration of salt in a solution outside of a semi permeable membrane affects the rate of Osmosis

Sean Williams

Lab Partner: Sean Clark

IB Biology Standard Level

September 30, 2010

Introduction

        Osmosis is the movement of water molecules from an area of high concentration (low solute concentration) to an area of low concentration (high solute concentration). This passive form of transport is one that involves a semi permeable membrane. We humans and other animals contain many cells, and these cells all have a permeable membrane in which diffusion/osmosis occurs. This movement of water is vital to our lives.

Focused Problem

        I will investigate how the concentration of salt in water (moles) will affect the rate of osmosis.

→ This will be observed by placing a cellulose bag  (or “cell”) into a beaker concentrated with salt. The rate of osmosis will be observed by first weighing the cellulose bag’s initial mass, and after the 24 hour time period, the final mass will be measured to see just how much the concentration of salt affects the rate of osmosis across the semi permeable membrane. Therefore, by finding out what concentration produces what results, we can apply this to instances where we might want to alter the rate of osmosis to benefit us.

Hypothesis

        The higher the concentration of salt solution in the beaker (environment outside of the semi permeable tubing), the faster the rate of osmosis will be out of the “cell”. The lower the concentration of salt in the solution, the slower the rate of osmosis will be. This is due to the fact that the salt (solute) decreases the concentration of the water outside of the cell, which contains a 100% water (solvent). Water will go out of the higher concentration inside the cell and out to the lower concentration where the salt is.

Independent Variable

        The concentration of salt it the water solution, which acts as an environment around the cellulose bag, or the “cell”. A constant amount of 500ml of distilled water is used, along with different concentrations of salt, meaning different molarities.

Dependent Variable

        The rate of osmosis will be observed by weighing the initial mass of the cellulose bags, and then the “final” mass after the 24-hour period inside the beaker. This difference in mass will determine how the concentration of salt affects the rate at which osmosis takes place.

Controlled Variables

Temperature

The temperature of the water was always held at a constant of 25°C. To make sure that the temperature would always stay the same, we kept our experiments in a cupboard where there would be little or no change in temperature. By preventing a change in temperature, we made certain that an increase/decrease in temperature would not speed up/slow down the rate of osmosis.

Join now!

Time

The time span in which the cellulose bags were kept in the beakers were always at a constant time of around 24 hours. This number may not be a 100% accurate for all of our tests, but we made sure that the 24 –hour rule was kept throughout all of our tests. The slightest change in time may not have made a significant change to the rate of osmosis in this case, as osmosis is not something that happens instantly.

Volume

The volume and amount of distilled water used in our experiment was always held at a constant ...

This is a preview of the whole essay