Absorbance of light by a transition metal complex investigation

Authors Avatar

Stephanie Chan 12HT

Chemistry HL – Mr. Fryer

Absorbance of light by a transition metal complex investigation

Introduction

Commonly known as transition metals, d block elements have partially filled d sublevels in one or more of their oxidation states. It is in the first row of transition elements that the 3d sub-level is incomplete. These d block elements show certain characteristic properties such as multiple oxidation states, ability to form complex ions, coloured compounds and good catalytic properties. In terms of variable oxidation states, d block elements usually have a +2 oxidation number which corresponds to the loss of the two 4s electrons (as it is easier to lose the 4s electrons than the 3d electrons). Transition metals can have variable oxidation states because the ionization energies allow for up to two 3d electrons to be lost.

Because transition metals are relatively small in size, the transition metal ions attract species that are rich in electrons – ligands (neutral molecules or negative ions that contain non-bonding pair of electrons – which when covalently bonded with and form complex ions. Because the d orbitals usually split up into two groups (high and low) in transition metal complex ions, the energy required to promote a d electron into the higher split level corresponds with a particular wavelength in the visible region, which is absorbed when light passes through the complex ion. Transition metal usually then exhibits the remaining energy/light – the complementary colour.

In this investigation, the different absorbance of these coloured solutions will be investigated by varying the number of moles of the transition metal in the solution. According to the Beer-Lambert law, absorbance is directly proportional to the concentration and that there is a logarithmic dependence between the absorbance and the concentration of the substance, this relationship is as shown in figure 1 and 2.

In the graph representation of the Beer-Lambert law, the logarithmic relationship can evidently be seen – as the concentration of the solution increases, the calibration curve becomes less linear and more flat. This is probably due to the saturation of colour of the solution. In addition, the graph also indicates that the relationship starts at the origin and is generally linear at lower concentrations.

Join now!

In this investigation, Nickel (II) Sulphate will be used as the transition metal and H2O will be used as the ligand. The complex ion formed will therefore be a hexaaquanickel(II) complex ion, Ni (H2O) 6 2+. It has a coordination number of 6 and is of an octahedral shape. (Microsoft Encarta, 2007)


Aim

To investigate how the concentration of hexaaquanickel(II) ions (Ni (H2O) 6 2+) in solution affects the absorbance of red light (660nm) by measuring it with a colorimeter.

Hypothesis

As the concentration of hexaaquanickel(II) ions increases, the absorbance of red light will also increase. This is so because as ...

This is a preview of the whole essay