• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3

# The Refraction of Light Lab

Extracts from this document...

Introduction

Sasha Zouev.  Lab partner Carric Morris

Physics IB, 09.12.05

The Refraction of Light Lab

Aim:

To establish the relationship between the angle of incidence and the angle of refraction when light passes from one medium to the other.

Hypothesis:

From our previous physics classes, we learned that the relationship between the angle of incidence i and the angle of refraction R was

Sin i     =    λ1      =      v1

Sin R    =    λ2      =      v2

From this we can also say that the ratio sin i / sin R should also remain constant, independent of the i value.

Furthermore we are also aware of another relationship which links the angles of incidence and refraction to the refractive index of the substance used.  The index of refraction is defined as the speed of light in vacuum divided by the speed of light in the medium.  This relationship is called ‘Snell’s law’.

The law is defined as:

 Some representative refractive indices. www.wikipedia.org Material n at λ=589.3 nm Vacuum 1 (exactly) Helium 1.000036 liquid water (20°C) 1.333 ethanol 1.36 glass (typical) 1.5 to 1.9 diamond 2.419

n1 sinλ1 = n2 sinλ2

Where n is the refractive index and λ the corresponding angle.

Middle

Table 1.  Light going from air into water

 Trial # angle of incidence (i) angle of refraction (R) Sin ( i ) Sin ( R ) Sin i / sin R(units) 1 20.5 ° 15.0 ° .350 .259 1.35 2 32.0 ° 23.5 ° .529 .390 1.33 3 40.0 ° 29.0 ° .643 .485 1.32 4 51.0 ° 36.0 ° .777 .588 1.32 5 67.0 ° 44.0 ° .921 .695 1.35 6 80.0 ° 48.0 ° .985 .743 1.33 Average sin i / sin R = 1.34

Data Analysis:

The results we obtained show that on average, we calculated a sin i over sin R to be 1.34 units.  Also we can say

Conclusion

Sources of error could have appeared when fiddling with the pins and the lamp during the experimental procedure.  The thickness of the ray was not ideal and at times too fat to shine onto one single pin.  Also after the ray was refracted, the brightness of the light ray was significantly duller and often very hard to find and trace.

Suggested improvements to the experimental procedure include perhaps using a stronger beam of light (maybe laser) so as to better see the angle of refraction.  Likewise, the room in which the experiment is being carried out could be also darker.  Further investigations could include observing other mediums.  Although in my lab group, we chose to work with water, others were investigating glass, plastic and various oils – all of which would give different data and results.

This student written piece of work is one of many that can be found in our International Baccalaureate Physics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Physics essays

1. ## Investigating How The Index Of Refraction Is Affected By Different Temperatures Of Water

The ray should pass through the Plexiglas with the hot water, and then be refracted on to the other side of the protractor ( it should be easier to read the refracted angle by placing a paper where you seem to see the refracted angle for a more accurate result).

2. ## The purpose of this experiment is to determine the refractive index of Perspex plastic. ...

plastic is equal to , where is the angle of incident and is the angle of refraction in radians. The answer will be rounded to 2 decimal places as the uncertainty has 2 decimal places. Example using results from the angle of incident at 0.17r and angle of reaction at 0.10r Sample Calculations 5.

1. ## Ohm's Law lab

DCP Graph 1.2 - Graph showing the plotted readings for the bulb filament immersed in water with the ammeter reading (A) on the y-axis and the voltmeter reading on the x-axis and showing line of best fit. Error bars cannot be shown as the magnitude of error � (1 - 5)% is insignificant on the graph.

2. ## Physics lab - Cantilever Beam

[so =] Hence, = ] The y- intercept is -10.89, Conclusion: From the graphs, I can conclude that the depression of the cantilever beam is not affected by the change of weight.

1. ## Aim of the Laboratory Experiment: Understanding of propagation of light waves phenomena by using ...

The light intensity I2 of the unknown lamp is calculated three times using the formula I2 = I1 (r22 / r12). The average value of I2 is calculated. The maximum residual is accepted to be the experimental error. The percent error is determined by dividing the experimental error and the average value for I2 and multiplying the result by 100.

2. ## HL Physics Revision Notes

An increase in light causes a decrease in resistance. A thermistor is a resistor whose value of resistance depends on its temperature. An increase in temperature causes a decrease in resistance. SOLVE CIRCUITS Topic 6: Fields and Forces: Newton?s Law of Gravitation states that every mass in the Universe attracts

1. ## In this experiment, a mechanism is prepared to observe the refraction of light and ...

That?s why slope of the graph vs gives the approximate value of refractive index of water . Figure : Graph of vs Since is proportional to , the graph which is given above is linear. According to the graph above, slope of best fit line gives the experimental value of

2. ## Gamma Rays

1: terrestrial: originated from the planet earth (not alien). Diagram02 Gamma rays are used in medicine, the nuclear power industry, the military, scientific research, industry, and various consumer products. Gamma radiation is also important in the medical sciences. Ionizing radiation is more harmful to cells when they are dividing (replicating

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to