Describe the structure of keratin and collagen and show how their structures are suited to their biological functions. Discuss one disease/ metabolic disorder that can arise from a structural defect in either protein.

Authors Avatar

Dominic Areago

Describe the structure of keratin and collagen and show how their structures are suited to their biological functions. Discuss one disease/ metabolic disorder that can arise from a structural defect in either protein.

        Keratin and collagen are very vital within the body’s structure; both are very similar in nature, being that they derive from amino acids, which make up their respective proteins. They both fall under a group of particular proteins known as scleroproteins or fibrous in nature. Majority of their structure consist of left-handed helix structures1. Scleroproteins make up one of the two major protein categories, the other being globular. Keratin and collagen each represent one of the three subclasses within scleroproteins.  As scleroproteins their jobs are to provide support and protection for the body. They are adapt for this because of their complex structure of repeating polypeptide chains which strengthen as the bind together; this and their insolubility are vital in maintaining the anatomy of the body. Whilst being similar in some ways, collagen and keratin remain different in their specific functions and role.

        As mentioned above keratin is one of the three scleroproteins. It is an extremely strong, insoluble tertiary protein; it is the main constituent in the structures of various parts in the body. These include the skin, hair, nails, as well as horns and hooves in animals. The variety of body compounds that contain keratin show that it is a material that varies depending on function. In relation to skin, the amino acids, which make it up are arranged differently from any other form of keratin and make up the soft layer known as skin. It is present in all epithelial cells, those on the outer surface and on the inner surface such as the lining of the digestive tract. On the other end of things nails contain keratin, which are very hard. Other hard substances such as horns and hooves are formed by epithelial cells adapting to growing generous amounts of keratin and then dying as individual cells, leaving the keratin to form into these hard structures2. Where keratin is needed to be hard the arrangement of specific amino acids respond to the need to form a tough material. One of keratin’s important qualities is that it has the ability to flex and not tear of become destroyed. Keratin reinforces epithelial cells by helping to maintain their connections between cells.

Join now!

        Cornification also known as keratinization is the foundation of how keratin in formed. The outer cells on the epidermis lose their function in this process, the cells organelles such as the nucleus and mitochondria disappear and metabolism ceases as the cells become replaced by keratin. This new layer is incapable of sensory perception and is classified as dead. Keratin covers the width of a cell enabling it to connect indirectly with other keratin in adjoining cell to form junctions called desmosomes2, this makes the outer most layer of non-porous, almost water proof.

        There are many types of keratin found in ...

This is a preview of the whole essay