• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

Different methods of solving equations compared. From the Excel tables of each method, we know that method 1 (change of sign method) takes 28 steps to find the root, while method 2 (Newton-Raphson method) and method 3 (rearrangement) take 4 and 17 steps r

Extracts from this document...

Introduction

Numerical Methods

Method 1: Change of sign method

Equation 1: image00.png

             →  image01.png

  Use the Autograph and it gives us the overall view of the graph of the function.

image12.png

  If we zoom in on the x and y axes, we can see that the graph shows that the equation has a root between x=0 and x=1. Bisect the interval between 0 and 1, then bisect the new interval where the sign changes and we can see that the two boundary lines get closer and closer to each other and will meet at a point finally (in theory).

image23.png

  However, in practice, we are not able to find out the exact values of the roots but we can still use this method to find the approximate values. Excel can help us with that.

 As shown in the table below by inputting initial values of a=0, b=1, we can calculate that f(a)>0, f(b)<0. Then divide the interval in half and get the midpoint c, where c=image29.png=0.5, and also the value of f(c). Since f(c)>0, we then can get a subinterval between c and b. The previous steps are then repeated. This method is applied recursively to the subinterval where the sign change occurs.

  The table below shows the data with accuracy of 8 decimal places.

a

f(a)

b

f(b)

c

f( c)

Max. error

0.00000000

2.60000000

1.00000000

-0.80000000

0.50000000

1.00000000

1.70000000

0.50000000

1.00000000

1.00000000

-0.80000000

0.75000000

0.10625000

0.90000000

0.75000000

0.10625000

1.00000000

-0.80000000

0.87500000

-0.34765625

0.45312500

0.75000000

0.10625000

0.87500000

-0.34765625

0.81250000

-0.12060547

0.22695313

0.75000000

0.10625000

0.81250000

-0.12060547

0.78125000

-0.00711670

0.11342773

0.75000000

0.10625000

0.78125000

-0.00711670

0.76562500

0.04958649

0.05668335

0.76562500

0.04958649

0.78125000

-0.00711670

0.77343750

0.02123928

0.02835159

0.77343750

0.02123928

0.78125000

-0.00711670

0.77734375

0.00706232

0.01417799

0.77734375

0.00706232

0.78125000

-0.00711670

0.77929688

-0.00002694

0.00708951

0.77734375

0.00706232

0.77929688

-0.00002694

0.77832031

0.00351775

0.00354463

0.77832031

0.00351775

0.77929688

-0.00002694

0.77880859

0.00174542

0.00177235

0.77880859

0.00174542

0.77929688

-0.00002694

0.77905273

0.00085924

0.00088618

0.77905273

0.00085924

0.77929688

-0.00002694

0.77917480

0.00041615

0.00044309

0.77917480

0.00041615

0.77929688

-0.00002694

0.77923584

0.00019460

0.00022155

0.77923584

0.00019460

0.77929688

-0.00002694

0.77926636

0.00008383

0.00011077

0.77926636

0.00008383

0.77929688

-0.00002694

0.77928162

0.00002844

0.00005539

0.77928162

0.00002844

0.77929688

-0.00002694

0.77928925

0.00000075

0.00002769

0.77928925

0.00000075

0.77929688

-0.00002694

0.77929306

-0.00001310

0.00001385

0.77928925

0.00000075

0.77929306

-0.00001310

0.77929115

-0.00000617

0.00000692

0.77928925

0.00000075

0.77929115

-0.00000617

0.77929020

-0.00000271

0.00000346

0 .77928925

0.00000075

0.77929020

-0.00000271

0.77928972

-0.00000098

0.00000173

0.77928925

0.00000075

0.77928972

-0.00000098

0.77928948

-0.00000012

0.00000087

0.77928925

0.00000075

0.77928948

-0.00000012

0.77928936

0.00000032

0.00000043

0.77928936

0.00000032

0.77928948

-0.00000012

0.77928942

0.00000010

0.00000022

0.77928942

0.00000010

0.77928948

-0.00000012

0.77928945

-0.00000001

0.00000011

0.77928942

0.00000010

0.77928945

-0.00000001

0.77928944

0.00000005

0.00000005

0.77928944

0.00000005

0.77928945

-0.00000001

0.77928945

0.00000002

0.00000003

0.77928945

0.00000002

0.77928945

-0.00000001

0.77928945

0.00000001

0.00000001

Error bound: ±0.000000005 (9dp)

The table below shows part of the formulas used in the Excel.

A

f(a)

b

f(b)

c

f( c)

0

=0.2*(A2-4)*(A2+2)*(2*A2-1)+1

1

=0.2*(C2-4)*(C2+2)*(2*C2-1)+1

=(A2+C2)/2

=0.2*(E2-4)*(E2+2)*(2*E2-1)+1

=IF(F2>0,E2,A2)

=0.2*(A3-4)*(A3+2)*(2*A3-1)+1

=IF(F2<0,E2,C2)

=0.2*(C3-4)*(C3+2)*(2*C3-1)+1

=(A3+C3)/2

=0.2*(E3-4)*(E3+2)*(2*E3-1)+1

=IF(F3>0,E3,A3)

=0.2*(A4-4)*(A4+2)*(2*A4-1)+1

=IF(F3<0,E3,C3)

=0.2*(C4-4)*(C4+2)*(2*C4-1)+1

=(A4+C4)/2

=0.2*(E4-4)*(E4+2)*(2*E4-1)+1

...read more.

Middle

0.68896484

-0.00016641

0.00025309

0.68896484

-0.00016641

0.68945313

0.00008753

0.68920898

-0.00003965

0.00012697

0.68920898

-0.00003965

0.68945313

0.00008753

0.68933105

0.00002389

0.00006359

0.68920898

-0.00003965

0.68933105

0.00002389

0.68927002

-0.00000790

0.00003177

0.68927002

-0.00000790

0.68933105

0.00002389

0.68930054

0.00000799

0.00001589

0.68927002

-0.00000790

0.68930054

0.00000799

0.68928528

0.00000005

0.00000794

0.68927002

-0.00000790

0.68928528

0.00000005

0.68927765

-0.00000393

0.00000397

0.68927765

-0.00000393

0.68928528

0.00000005

0.68928146

-0.00000194

0.00000199

0.68928146

-0.00000194

0.68928528

0.00000005

0.68928337

-0.00000095

0.00000099

0.68928337

-0.00000095

0.68928528

0.00000005

0.68928432

-0.00000045

0.00000050

0.68928432

-0.00000045

0.68928528

0.00000005

0.68928480

-0.00000020

0.00000025

0.68928480

-0.00000020

0.68928528

0.00000005

0.68928504

-0.00000008

0.00000012

0.68928504

-0.00000008

0.68928528

0.00000005

0.68928516

-0.00000002

0.00000006

0.68928516

-0.00000002

0.68928528

0.00000005

0.68928522

0.00000002

0.00000003

0.68928516

-0.00000002

0.68928522

0.00000002

0.68928519

0.00000000

0.00000002

0.68928519

0.00000000

0.68928522

0.00000002

0.68928520

0.00000001

0.00000001

0.68928519

0.00000000

0.68928520

0.00000001

0.68928520

0.00000000

0.00000000

0.68928519

0.00000000

0.68928520

0.00000000

0.68928519

0.00000000

0.00000000

0.68928519

0.00000000

0.68928519

0.00000000

0.68928519

0.00000000

0.00000000

  Since this method cannot find out all the roots, we say that it fails in this case. For the example above, it is because the three roots lie too close together. We usually ignore the other two roots when we find out one in the interval since we didn’t expect them all in such a small interval.

Method 2: Newton-Raphson method

Equation 2: image35.png

              → image02.png

  Here shows the overall view of the graph of the function.

image03.png

  Zoom in on the axes we can clearly see that using the Newton-Raphson method gives us one root efficiently.

image04.png

How does the Newton-Raphson method actually work?

image05.png

  The graph above shows a part of a function (the blue curve). Suppose we have an estimated value of a root, xn. Draw a tangent at where x=xn, which is shown in red, we can get another estimated root xn+1 which is a better approximation.

  Sinceimage06.png, we can deduce thatimage07.png.

  With the help of Excel, we can get the approximate value of the root shown above within just a few steps.

  The table below shows the data with accuracy of 8 decimal places.

x

f(x)

f'(x)

0.00000000

-1.00000000

6.00000000

0.16666667

-0.13425926

4.41666667

0.19706499

-0.00413017

4.14585394

0.19806121

-0.00000437

4.13707266

0.19806226

0.00000000

4.13706334

  And here’s the formulas used in the table:

x

f(x)

f'(x)

0

=A2*(A2-2)*(A2-3)-1

=3*A2^2-10*A2+6

=A2-(B2/C2)

=A3*(A3-2)*(A3-3)-1

=3*A3^2-10*A3+6

=A3-(B3/C3)

=A4*(A4-2)*(A4-3)-1

=3*A4^2-10*A4+6

=A4-(B4/C4)

=A5*(A5-2)*(A5-3)-1

=3*A5^2-10*A5+6

=A5-(B5/C5)

=A6*(A6-2)*(A6-3)-1

=3*A6^2-10*A6+6

  Similarly, starting with another two points, we can get the approximate values of the other two roots. The tables below show the data with accuracy of 8 decimal places as well.

x

f(x)

f'(x)

x

f(x)

f'(x)

2.00000000

-1.00000000

-2.00000000

3.00000000

-1.00000000

3.00000000

1.50000000

0.12500000

-2.25000000

3.33333333

0.48148148

6.00000000

1.55555556

-0.00137174

-2.29629630

3.25308642

0.03168108

5.21684957

1.55495818

-0.00000012

-2.29589698

3.24701358

0.00017529

5.15915579

1.55495813

0.00000000

-2.29589694

3.24697960

0.00000001

5.15883361

3.24697960

0.00000000

5.15883360

...read more.

Conclusion

-0.00848389

0.39843750

0.01212597

0.39843750

0.01212597

0.40625000

-0.00848389

0.40234375

0.00181472

0.40234375

0.00181472

0.40625000

-0.00848389

0.40429688

-0.00333621

0.40234375

0.00181472

0.40429688

-0.00333621

0.40332031

-0.00076114

0.40234375

0.00181472

0.40332031

-0.00076114

0.40283203

0.00052669

0.40283203

0.00052669

0.40332031

-0.00076114

0.40307617

-0.00011725

0.40283203

0.00052669

0.40307617

-0.00011725

0.40295410

0.00020471

0.40295410

0.00020471

0.40307617

-0.00011725

0.40301514

0.00004373

0.40301514

0.00004373

0.40307617

-0.00011725

0.40304565

-0.00003676

0.40301514

0.00004373

0.40304565

-0.00003676

0.40303040

0.00000348

0.40303040

0.00000348

0.40304565

-0.00003676

0.40303802

-0.00001664

0.40303040

0.00000348

0.40303802

-0.00001664

0.40303421

-0.00000658

0.40303040

0.00000348

0.40303421

-0.00000658

0.40303230

-0.00000155

0.40303040

0.00000348

0.40303230

-0.00000155

0.40303135

0.00000097

0.40303135

0.00000097

0.40303230

-0.00000155

0.40303183

-0.00000029

0.40303135

0.00000097

0.40303183

-0.00000029

0.40303159

0.00000034

0.40303159

0.00000034

0.40303183

-0.00000029

0.40303171

0.00000003

0.40303171

0.00000003

0.40303183

-0.00000029

0.40303177

-0.00000013

0.40303171

0.00000003

0.40303177

-0.00000013

0.40303174

-0.00000005

0.40303171

0.00000003

0.40303174

-0.00000005

0.40303172

-0.00000001

0.40303171

0.00000003

0.40303172

-0.00000001

0.40303171

0.00000001

0.40303171

0.00000001

0.40303172

-0.00000001

0.40303172

0.00000000

0.40303171

0.00000001

0.40303172

0.00000000

0.40303172

0.00000000

0.40303172

0.00000000

0.40303172

0.00000000

0.40303172

0.00000000

  Use Autograph and Excel to find the required root, and we can see that it gives us the same value of 0.40303172 (correct to 8dp).

Newton-Raphson method

Equation 3: image13.png

  We are required to find the same root which lies between x=0 and x=1.

image30.png

x

f(x)

f'(x)

0.00000000

1.00000000

-2.00000000

0.50000000

-0.25000000

-2.50000000

0.40000000

0.00800000

-2.64000000

0.40303030

0.00000373

-2.63752066

0.40303172

0.00000000

-2.63751948

 It also finds the same value of the root which is corrected to 8dp successfully.

  From the Excel tables of each method, we know that method 1 (change of sign method) takes 28 steps to find the root, while method 2 (Newton-Raphson method) and method 3 (rearrangement) take 4 and 17 steps respectively. In terms of speed of convergence, we can say that the Newton-Raphson method is the most efficient one.

  However, if we compare them in terms of ease of use with available hardware and software, the change of sign method is the easiest one to use, since it involves least calculation. In change of sign method, we just need the original equation, however, in Newton-Raphson method, we need to calculate its derivative and in rearrangement method we need to rearrange the equation to get g(x). It can be illustrated more clearly in the following table.

steps

formulas involved

Change of sign method

28

f(x)

Newton-Raphson method

4

f(x), f’(x)

Rearrangement

17

f(x), g(x)

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    C3 Coursework - different methods of solving equations.

    5 star(s)

    When I re-arrange f(x) into a different x = g(x), it does not converge to the point when I go through the iterations. E.g. I re- arranged f(x) to: If I plot y = g(x) against y = x, it looks like this: Looking at this, it implies that the

  2. Change of Sign Method.

    To three decimal places, the root = 0.839. Error Bounds A change of sign method such as the one used, provides bounds within which a root lies so that the maximum possible error in a result is known. When x = 0.8385, f(0.8385) = -0.00218772512 When x = 0.8395, f(0.8395)

  1. I am going to solve equations by using three different numerical methods in this ...

    Raphson Method, I can't get the point I want, but the further one. Therefore, it is failure. Rearranging equation method: This method is rearranging the equation f(x) =0 into form x=g(x).Thus y=x and y=g(x) can cross together, and then we can get a single value which can be estimated for the root.

  2. MEI numerical Methods

    is: As k-> ? then ? -> 0 In other words as the value of K increases, the value of ?(the root) decreases. The graph appears to have some form of geometric progression if we look at the graph. In order for it to be a geometric progression it must have a common multiple.

  1. Numerical solutions of equations

    x1 = 0.5 x2 = 1 x3 = -1.148698 x4 = -1.268010 x5 = -1.346816 I can immediately see that there is no convergence in this rearrangement towards the particular root I am looking for, that I found in the previous rearrangement (Rearrangement 2).

  2. C3 COURSEWORK - comparing methods of solving functions

    I will first use the method to find the root at the interval [-3, -4] y=0.5x³+1.5x²–x–0.25 X2 X3 X4 X1 At first, let’s start with a close approximation, let X1= -3, on the x-axis (shown on the graph above), draw a verticle line until it meet y=0.5x³+1.5x²–x–0.25.

  1. Newton Raphson Method for Solving 6x3+7x2-9x-7=0

    n xn f(xn) f `(xn) xn+1 0 x0 = -1 f(x0)= 3 f '(x0) = -5 x1 = -0.4 1 x1 = -0.4 f(x1) = -2.664 f '(x1) = -11.72 x2 = -0.6273 2 x2 = -0.6273 f(x2) = -0.0808 f '(x2)

  2. Evaluating Three Methods of Solving Equations.

    are no roots because the curve goes through the x-axis and then comes up again within the search field, unless of course the initial search field itself is narrowed considerably which may be difficult to ascertain. An example of such an equation is: y=x3+0.12075x2-14.1508x+19.9297 As you can see, if we

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work