• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Using Decimal search

Extracts from this document...

Introduction

Rameez Sheikh 13I

Pure 2 Coursework

Using Decimal search

In this investigation, I have chosen  x^5-14x+2=0. Such an equation cannot be solved algebraically.

The following graph represents y= f(x):

  • Graph  1 –

The graph shows me that  x^5-14x+2=0 has three roots, lying in the intervals (-2,-1) , (0, 1) , (1,2).

X

-3

-2

-1

0

1

2

3

Y

-199

-2

15

2

-11

6

203

Within the change of sign methods, decimal search method shall be used to find out an approximate value for roots of  x^5-14x+2=0.

In this method I first take increments of x of size 0.1 within the interval (1,2). I do this until I find a change in sign.

X

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Y

-11

-11.78

-12.31

-12.48

-12.22

-11.40

-9.91

-7.6

-4.3

0.16

There is a sign change, and therefore a root, in the interval (1.8,1.9).

I can now continue with increments of 0.01 within the interval (1.8,1.9).

X

1.8

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.9

Y

-4.3

-3.91

-3.51

-3.09

-2.66

-2.23

-1.77

-1.31

-0.83

-0.34

0.16

This shows that the root lies in the interval (1.89,1.90).

We can express this information as, the root can be taken as 1.895 with maximum error of + 0.005

This can be shown graphically:

  • Graph 2 –

I have also chosen 10x^3-2.5x+0.2=0 which again cannot be solved algebraically.

The following graph represents y=f(x)

  • Graph 3 -

The graph shows me that 10x^3-2.5x+0.2=0 has three roots, lying in the intervals (-1,0), (0,1).

X

-1

0

1

Y

-7.3

0.2

7.7

I can stop here as there is no change of sign in interval (0,1).

...read more.

Middle

5x^3-1.5x+0.2=0 has 3 roots, lying in the intervals (-1,-0.5), (0,0.5)

X

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Y

-3.3

-2.095

-1.16

-0.465

0.02

0.325

0.48

0.515

0.46

0.345

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.055

-0.06

-0.115

-0.08

0.075

0.38

0.865

1.56

2.495

3.7

Therefore         Xn+1= x - (5x^3-1.5x+0.2)

                                   15x^2-1.5

                      = 15x^3-1.5x-(5x^3-1.5x+0.2)

                                15x^2-1.5

                      = 15x^3-1.5x-5x^3+1.5x-0.2

                                15x^2-1.5

Xn+1 = 10x^3-0.2        => The Newton-Raphson method for eq’n

                   15x^2-1.5        5x^3-1.5x+0.2=0

Results are as follows:

X

0.3

-0.46667

-0.68847

-0.61736

-0.60540

-0.60507

Xn+1

-0.46667

-0.68847

-0.61736

-0.60540

-0.60507

-0.60507

These results show that for a positive value of X, using the Newton-Raphson method on eq’n 5x^3-1.5x+0.2=0, it finds the root in the interval (-0.6,-0.7).

As shown in Graph 12, a tangent is taken at 0.3 to find the root between he interval (0.2,0.3). But instead finds the root in the interval (-0.6,-0.7).

We can express this information as, the root can be taken as –0.60507 with maximum error of + 0.000005. Therefore  -0.605065 < X < -0605075.

To check for the different signs,

f(-0.605065) = 5x^3-1.5x+0.2 = 0.00001

f(-0.605075) = 5x^3-1.5x+0.2 = -0.00002

  • Graph 13 –

Rearrangement method

The theory behind this iteration method is as follows.

image00.jpg

The situation might be as illustrated in the figure above. The following is examples of graphs of y = x and y = f(x) intersect at the root. The starting point is X0.

...read more.

Conclusion

+ 0.000005. Therefore  2.128415 < X < 2.128425.

To check for the different signs,

f(2.128415) = x^3-5x+1= -0.00003

f(2.128425) = x^3-5x+1= 0.00005

- Graph 18 -

Summary

If a < 0, and b > 0, then the root lies in the interval a < x < b. This idea is called achange of sign. We will not be able to find the root exactly, but we will be able to ‘home in’ on the root until we have it to the desired degree of accuracy. This method uses a much longer procedure to find the estimated root.

The Newton Raphson method does not need a change of sign, but instead uses the tangent to the graph at a known point to provide a better estimate for the root of the equation.

If the gradient = 0 at the starting point then no solution can be found by this method because we cannot divide by 0.

This method uses a much quicker procedure to find the root.

This is an alternative method that rearranges the original question into two equations, a straight line and a curve, and then finds where these meet.

Performing this iteration produces two possible results:

1. It diverges (i.e. it gets further and further away from the start). This means the rearrangement has not worked.

2. It converges (i.e. it homes in) to the root, and solves the equation.

This means that the solution may converge and provide you the solution or it may diverge. In this case a solution will not be found.

/

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Investigate the solution of equations, comparing the following methods, Systematic search for change of ...

    Comparison of Methods I will now compare how the three methods manage to find the same root, the speed of convergence to find that root and how easy each method is to implicate with the software and hardware present.

  2. Numerical Method (Maths Investigation)

    It is logical to use one of the equations above that are most suitable for applying the other two methods to find the required root. Most Suitable equation is the equation that doesn't meet to the criteria of the failure of all these three methods.

  1. maths pure

    An example of this may be the function f(x) = (x-1)(x+2)2. The graph of f(x) = (x-1)(x+2)2 is illustrated below. As can be seen the curve only touches the point x = -2 and does not cross the x-axis. x = -2 is clearly a root of the function f(x)

  2. Although everyone who gambles at all probably tries to make a quick mental marginal ...

    Similarly, if the three games' chances of winning anything are compared versus their entry price: Table 8: Comparison of games by odds Case Maximum Payoff Odds Entry price 1 $2000000 1/108140 $1 2 $ 1/4 $5 3 $1000000 1/24 $100 When considering entry price E, its value depends on two things, odds of winning and potential payoff.

  1. The method I am going to use to solve x&amp;amp;#8722;3x-1=0 is the Change ...

    shown below: The blue line is approaching to the root, and that is the answer of f(x)=0 Rearrangement B: 3x^5+5x�-1=0 x�=(1-3x^5)/5 x=V[(1-3x^5)/5] On Autograph software, I can draw the equation y=g(x)= V[(1-3x^5)/5]and also the line y=x. The graph is shown below: I want to find the intersection of the arrow

  2. The Gradient Fraction

    The gradient of the graph 'y=x2' is just 2 multiplied by the 'x' value. If the value is negative then the gradient will also be negative, because the negative value is going to be multiplied by +2, so the result will be negative.

  1. Decimal search.

    for 1.353<x<1.354 with increments in x of 0.0001, a change of sign gives 1.3532<?<1.3533 x f(x) 1.353 -0.000795023 1.3531 -0.00041641 1.3532 -3.77352E-05 1.3533 0.000341 1.3534 0.000719797 1.3535 0.001098655 1.3536 0.001477575 1.3537 0.001856555 1.3538 0.002235597 1.3539 0.0026147 1.354 0.002993864 Having established that 1.3532 <?<1.3533, since f(1.3532)

  2. Fractals. In order to create a fractal, you will need to be acquainted ...

    does not require the use of the computer if you just want the basic levels of the fractal. The SierpiÅksi triangle can be based off of Pascal’s triangle. By coloring all the placements of odd numbers on Pascal’s triangle black, we can make the SierpiÅksi Triangle very easily.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work